Publications by authors named "Jong-Sik Moon"

To enhance security in the semiconductor industry's globalized production, the Defense Advanced Research Projects Agency (DARPA) proposed an authentication protocol under the Supply Chain Hardware Integrity for Electronics Defense (SHIELD) program. This protocol integrates a secure hardware root-of-trust, known as a dielet, into integrated circuits (ICs). The SHIELD protocol, combined with the Advanced Encryption Standard (AES) in counter mode, named CTR-SHIELD, targets try-and-check attacks.

View Article and Find Full Text PDF

The ease of the molecular orientation of a chromophore has an important effect on the electro-optical (EO) properties of polymeric photorefractive (PR) composites. A derivative of 4-piperidinobenzylidene-malononitrile (PDCST) with an alkoxy group added as a side branch was synthesized to improve the molecular orientation characteristics. Electrophoresis was performed on the polymeric PR composite to which the improved PDCST had been added.

View Article and Find Full Text PDF

Recently, new virus-based sensor systems that operate on M13 bacteriophage infrastructure have attracted considerable attention. These systems can detect a range of chemicals with excellent sensitivity and selectivity. Filaments consistent with M13 bacteriophages can be ordered by highly established forms of self-assembly.

View Article and Find Full Text PDF

The molecular orientation of a chromophore importantly affects the electro-optic characteristics of polymeric photorefractive composites. We designed methyl, ethyl, and isopropyl derivatives of 4-piperidinobenzylidene-malononitrile (PDCST) with the aim of enhancing molecular orientation properties, and investigated the effects of alkyl substitution on the electro-optic properties and response times of polymeric photorefractive composites. The three alkyl-substituted PDCSTs showed enhanced electro-optic responses and photorefractive grating buildup rates.

View Article and Find Full Text PDF

An M13 bacteriophage-based color sensor, which can change its structural color upon interaction with a gaseous molecule, was evaluated as a screening tool for the discrimination of the geographical origins of three different agricultural products (garlic, onion, and perilla). Exposure of the color sensor to sample odors induced the self-assembled M13 bacteriophage bundles to swell by the interaction of amino acid residues (repeating units of four glutamates) on the bacteriophage with the odor components, resulting in a change in the structural color of the sensor. When the sensor was exposed to the odors of garlic and onion samples, the RGB color changes were considerable because of the strong interactions of the odor components such as disulfides with the glutamate residues on the sensor.

View Article and Find Full Text PDF

A bioinspired M-13 bacteriophage-based photonic nose was developed for differential cell recognition. The M-13 bacteriophage-based photonic nose exhibits characteristic color patterns when phage bundle nanostructures, which were genetically modified to selectively capture vapor phase molecules, are structurally deformed. We characterized the color patterns of the phage bundle nanostructure in response to cell proliferation several biomarkers differentially produced by cells, including hydrazine, -xylene, ethylbenzene, ethanol and toluene.

View Article and Find Full Text PDF

Recently, M13 bacteriophage has started to be widely used as a functional nanomaterial for various electrical, chemical, or optical applications, such as battery components, photovoltaic cells, sensors, and optics. In addition, the use of M13 bacteriophage has expanded into novel research, such as exciton transporting. In these applications, the versatility of M13 phage is a result of its nontoxic, self-assembling, and specific binding properties.

View Article and Find Full Text PDF

A simple and portable colorimetric sensor based on M13 bacteriophage (phage) was devised to identify a class of endocrine disrupting chemicals, including benzene, phthalate, and chlorobenzene derivatives. Arrays of structurally and genetically modified M13 bacteriophage were fabricated so as to produce a biomimetic colorimetric sensor, and color changes in the phage arrays in response to several benzene derivatives were characterized. The sensor was also used to classify phthalate and chlorobenzene derivatives as representatives of endocrine disrupting chemicals.

View Article and Find Full Text PDF

Extensive study of photorefractive polymeric composites photosensitized with semiconductor nanocrystals has yielded data indicating that the inclusion of such nanocrystals enhances the charge-carrier mobility, and subsequently leads to a reduction in the photorefractive response time. Unfortunately, the included nanocrystals may also act as a source of deep traps, resulting in diminished diffraction efficiencies as well as reduced two beam coupling gain coefficients. Nonetheless, previous studies indicate that this problem is mitigated through the inclusion of semiconductor nanocrystals possessing a relatively narrow band-gap.

View Article and Find Full Text PDF

Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction.

View Article and Find Full Text PDF

Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions.

View Article and Find Full Text PDF

Herceptin, a typical monoclonal antibody, was immobilized on the surface of CdSe/ZnS core-shell quantum dots (QDs) to enhance their specific interactions with breast cancer cells (SK-BR3). The mean size of the core-shell quantum dots (28 nm), as determined by dynamic light scattering, increased to 86 nm after herceptin immobilization. The in vitro cell culture experiment showed that the keratin forming cancer cells (KB) proliferated well in the presence of herceptin-conjugated QDs (QD-Her, 5 nmol/mL), whereas most of the breast cancer cells (SK-BR3) had died.

View Article and Find Full Text PDF

Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect.

View Article and Find Full Text PDF

Lactobionic acid, bearing a beta -galactose group, was coupled with poly(allyl amine) to provide synthetic extracellular matrices together with poly(vinyl alcohol) (PVA). The hepatocytes were encapsulated in Ba-alginate capsules with galactosylated poly(allyl amine) (GA) and PVA as extracellular matrices. From microscopic observation, it was revealed that the microcapsule prepared has a highly porous structure with interconnected pores and pore sizes ranging between 50-150 nm on both the surface and the cross-section.

View Article and Find Full Text PDF