Publications by authors named "Jong-Seong Park"

Excessive stimulation of the quinolinic acid induces neuronal cell death and is implicated in developing several neurodegenerative diseases. This study investigated whether a Wnt5a antagonist plays a neuroprotective role by regulating the Wnt pathway, activating cellular signaling mechanisms, including MAP kinase and ERK, and acting on the antiapoptotic and the proapoptotic genes in N18D3 neural cells. The cells were pretreated with a Wnt5a antagonist Box5, for one hour and then exposed to quinolinic acid (QUIN), an NMDA receptor agonist for 24 hours.

View Article and Find Full Text PDF

Efficient control over multiple gene expression still presents a major challenge. Synthetic sRNA enables targeted gene expression control in trans without directly modifying the chromosome, but its use to simultaneously target multiple genes can often cause cell growth defects because of the need for additional energy for transcription and lowering of their repression efficiency by limiting the amount of Hfq protein. To address these limitations, we present fusion sRNA (fsRNA) that simultaneously regulates the translation of multiple genes efficiently.

View Article and Find Full Text PDF

With the rapid advances in biotechnological tools and strategies, microbial cell factory-constructing strategies have been established for the production of value-added compounds. However, optimizing the tradeoff between the biomass, yield, and titer remains a challenge in microbial production. Gene regulation is necessary to optimize and control metabolic fluxes in microorganisms for high-production performance.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules.

View Article and Find Full Text PDF
Article Synopsis
  • * It emphasizes the importance of optimizing gene expression and regulation to balance growth and production in these factories, focusing on three regulation stages: genomic, mRNA, and protein.
  • * The review highlights current technologies and genetic-engineering tools used in constructing microbial cell factories, along with their applications, while also exploring future strategies for improving gene expression and regulation.
View Article and Find Full Text PDF

Manipulation of both pore diameters and heights of two-dimensional periodic porous polymer films is important to extensively control their characteristics. However, except for using different sized colloid templates in replication methods, an effective method that tunes these factors has rarely been reported. We found that both parameters are controllable by adjusting the flow behaviors of polystyrene colloids and curing resin precursors during the preparation of phenolic resin and poly(dimethylsiloxane) periodic porous films by embedding their precursors into colloidal crystal monolayers.

View Article and Find Full Text PDF

Background: Mood disorders, depression, and loneliness are established risk factors for thrombotic occlusions. Social relationships in general, and marital status in particular may play a role in predicting cardiovascular outcomes and survival after ST-segment elevation myocardial infarction (STEMI), but the evidence is inconclusive especially in Asians.

Methods: The Korean patients presented with STEMI (n=980) constituted married (n=780); or widowed, divorced, or single (WDS, n=200) groups.

View Article and Find Full Text PDF

Bone marrow-derived mesenchymal stem cells (BM-MSCs), which are characterized by multipotency and self-renewal, are responsible for tissue regeneration and repair. We have previously reported in adipose tissue-derived MSCs that only Wnt5a is enhanced at neurogenic differentiation, and the mechanism of differentiation is dependent on the Wnt5a/JNK pathway; however, the role of Wnt/MAPK pathway is yet to be investigated in neurogenic differentiation in BM-MSCs. We compared the transcriptional expression of Wnt in neurogenic induced-hBM-MSCs (NI-hBM-MSCs) with that in primary hBM-MSCs, using RT-PCR, qPCR, and western blotting.

View Article and Find Full Text PDF

Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons.

View Article and Find Full Text PDF

Background: Clopidogrel and aspirin combination remains a cornerstone for modern dual antiplatelet therapy (DAPT) following coronary stenting. Although monitoring is not currently recommended, certain high-risk cohorts may benefit from tailoring antiplatelet options to reduce thrombotic or/and hemorrhagic risks. Patients with diminished estimated glomerular filtration rate (eGFR) are prone to both vascular occlusions and bleeding events in whom monitoring may be especially advantageous.

View Article and Find Full Text PDF

This study aimed to investigate the effect of pituitary adenylate cyclase-activating peptide (PACAP) on the pacemaker activity of interstitial cells of Cajal (ICC) in mouse colon and to identify the underlying mechanisms of PACAP action. Spontaneous pacemaker activity of colonic ICC and the effects of PACAP were studied using electrophysiological recordings. Exogenously applied PACAP induced hyperpolarization of the cell membrane and inhibited pacemaker frequency in a dose-dependent manner (from 0.

View Article and Find Full Text PDF

Stem cells are a powerful resource for cell-based transplantation therapies, but understanding of stem cell differentiation at the molecular level is not clear yet. We hypothesized that the Wnt pathway controls stem cell maintenance and neural differentiation. We have characterized the transcriptional expression of Wnt during the neural differentiation of hADSCs.

View Article and Find Full Text PDF

Objectives: In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae.

View Article and Find Full Text PDF

We investigated the presence of β3-adrenoceptor and its functional effects on pacemaker potentials in colonic interstitial cells of Cajal (ICCs) from mice. The whole-cell patch clamp technique was used to record pacemaker potentials in cultured ICCs and reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the mRNA transcript levels β-adrenoceptors. The β3-adrenoceptor agonist, BRL37344, reduced the frequency of pacemaker potentials in a concentration-dependent manner.

View Article and Find Full Text PDF

Interstitial cells of Cajal (ICCs) from the urinary bladder regulate detrusor smooth muscle activities. We cultured ICCs from the urinary bladder of mice and performed patch clamp and intracellular Ca(2+) ([Ca(2+)]i) imaging to investigate whether cultured ICCs can be a valuable tool for cellular functional studies. The cultured ICCs displayed two types of spontaneous electrical activities which are similar to those recorded in intact bladder tissues.

View Article and Find Full Text PDF

Purpose: To investigate whether carnosine can increase retinal ganglion cell (RGC) survival in ischemic mouse retina.

Methods: Retinal ischemia was induced by constant elevation of intraocular pressure (100-110 mmHg) for 60 min in C57BL/6 J mice pretreated with carnosine (1000 mg/kg) or saline. Hypoxia inducing factor-1 alpha (HIF-1α), glial fibrillary acidic protein (GFAP), and dynamin-related protein-1 (Drp-1) expressions were assessed at 6, 12, and 24 h after retinal ischemia.

View Article and Find Full Text PDF

Objective: The purpose of this study was to establish a minimally invasive and reproducible protocol for estimating the gastrointestinal (GI) transit time in mice using barium and radiopaque markers.

Materials And Methods: Twenty 5- to 6-week-old Balb/C female mice weighing 19-21 g were used. The animals were divided into three groups: two groups that received loperamide and a control group.

View Article and Find Full Text PDF

Background And Objectives: The aim of this study was to confirm the predictive cut-off values for P2Y12 reaction units (PRU) and aspirin reaction units (ARU) and to evaluate the clinical impact of VerifyNow® assays.

Subjects And Methods: From November 2007 to October 2009, 186 eligible patients were prospectively recruited. Post-treatment platelet reactivity was measured by VerifyNow® assays within 12 to 24 hours after intervention, followed by standard dual maintenance dose therapy for 1 year.

View Article and Find Full Text PDF

This study was designed to investigate the effects an 8-Br-cGMP on the neuronal activity of rat vestibular nuclear cells. Sprague-Dawley rats aged 14 to 16 days were decapitated under ether anesthesia. After treatment with pronase and thermolysin, the dissociated vestibular nuclear cells were transferred into a chamber on an inverted microscope.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG) is the most potent antioxidant polyphenol in green tea. In the present study, we investigated whether EGCG plays a role in the expression of transforming growth factor-beta1 (TGF-β1), protein kinase C (PKC) α/βII, and nuclear factor-kappaB (NF-κB) in glomerular epithelial cells (GECs) against high-glucose injury. Treatment with high glucose (30 mM) increased reactive oxygen species (ROS)/lipid peroxidation (LPO) and decreased glutathione (GSH) in GECs.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is emerging as a new class of second messenger involved in cellular proliferation, differentiation, and apoptosis and is implicated in diverse physiological functions. Despite many studies on the biological functions of S1P, however, little is known about its role in neuronal differentiation. By use of reverse transcription-polymerase chain reaction and immunostaining, this study aimed to explore whether S1P can differentiate neuroblastoma cells into neural cells.

View Article and Find Full Text PDF

Background: The aim of this study was to evaluate myocardial function in patients with non-hypertensive metabolic syndrome.

Methods: We selected metabolic syndrome patients (n = 42) without evidence of hypertension and compared them to age-matched control individuals (n = 20). All patients were evaluated by two-dimensional and tissue Doppler echocardiography including tissue Doppler derived strain and strain rate measurements.

View Article and Find Full Text PDF

The aim of this study was to determine the effects of transplanted neural differentiated human mesenchymal stem cells (hMSCs) in a guinea pig model of auditory neuropathy. In this study, hMSCs were pretreated with a neural-induction protocol and transplanted into the scala tympani of the guinea pig cochlea 7 days after ouabain injury. A control model was made by injection of Hanks balanced salt solution alone into the scala tympani of the guinea pig cochlea 7 days after ouabain injury.

View Article and Find Full Text PDF

Objectives/hypothesis: The purpose of this study was to investigate the effects of platelet-rich plasma (PRP) and neural-induced human mesenchymal stem cells (nMSCs) on axonal regeneration from a facial nerve axotomy injury in a guinea pig model.

Study Design: Prospective, controlled animal study.

Methods: Experiments involved the transection and repair of the facial nerve in 24 albino guinea pigs.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)) is involved in intestinal motility through changes of smooth muscle activity. However, there is no report as to the modulatory effects of H(2)O(2) on interstitial cells of Cajal (ICC). We investigated the H(2)O(2) effects and signal transductions to determine whether the intestinal motility can be modulated through ICC.

View Article and Find Full Text PDF