Publications by authors named "Jong-Pil Jeon"

Efficient sodium ion storage in graphite is as yet unattainable, because of the thermodynamic instability of sodium ion intercalates-graphite compounds. In this work, sodium fluorozirconate (NaZrF, SFZ) functionalized graphite (SFZ-G) is designed and prepared by the in situ mechanochemical silicon (Si) replacement of sodium fluorosilicate (NaSiF, SFS) and functionalization of graphite at the same time. During the mechanochemical process, the atomic Si in SFS is directly replaced by atomic zirconium (Zr) from the zirconium oxide (ZrO) balls and container in the presence of graphite, forming SFZ-G.

View Article and Find Full Text PDF

Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, PN) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC.

View Article and Find Full Text PDF

Porous polymer networks (PPNs) are promising candidates as photocatalysts for hydrogen production. Constructing a donor-acceptor structure is known to be an effective approach for improving photocatalytic activity. However, the process of how a functional group of a monomer can ensure photoexcited charges transfer and improve the hydrogen evolution rate (HER) has not yet been studied on the molecular level.

View Article and Find Full Text PDF

Efficient and stable catalysts are highly desired for the electrochemical conversion of hydrogen, oxygen, and water molecules, processes which are crucial for renewable energy conversion and storage technologies. Herein, we report the development of hollow nitrogenated carbon sphere (HNC) dispersed rhodium (Rh) single atoms (RhHNC) as an efficient catalyst for bifunctional catalysis. The RhHNC was achieved by anchoring Rh single atoms in the HNC matrix with an Rh-NC configuration, via a combination of polymerization and carbonization approach.

View Article and Find Full Text PDF

The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have emerged as a promising platform for photocatalysts. Their crystalline porous nature allows comprehensive mechanistic studies of photocatalysis, which have revealed that their general photophysical parameters, such as light absorption ability, electronic band structure, and charge separation efficiency, can be conveniently tailored by structural modifications. However, further understanding of the relationship between structure-property-activity is required from the viewpoint of charge-carrier transport, because the charge-carrier property is closely related to alleviation of the excitonic effect.

View Article and Find Full Text PDF

Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production.

View Article and Find Full Text PDF

The oxygen reduction reaction is essential for fuel cells and metal-air batteries in renewable energy technologies. Developing platinum-group-metal (PGM)-free catalysts with comparable catalytic performance is highly desired for cost efficiency. Here, we report a tin (Sn) nanocluster confined catalyst for the electrochemical oxygen reduction.

View Article and Find Full Text PDF

Developing covalent organic frameworks (COFs) with good electrical conductivity is essential to widen their range of practical applications. Thermal annealing is known to be a facile approach for enhancing conductivity. However, at higher temperatures, most COFs undergo amorphization and/or thermal degradation because of the lack of linker rigidity and physicochemical stability.

View Article and Find Full Text PDF

After the emergence of graphene in the material science field, top-down and bottom-up studies to develop semiconducting organic materials with layered structures became highly active. However, most of them have suffered from poor processability, which hampers device fabrication and frustrates practical applications. Here, we suggest an unconventional approach to fabricating semiconducting devices, which avoids the processability issue.

View Article and Find Full Text PDF

Carbon hydrogasification is the slowest reaction among all carbon-involved small-molecule transformations. Here, we demonstrate a mechanochemical method that results in both a faster reaction rate and a new synthesis route. The reaction rate was dramatically enhanced by up to 4 orders of magnitude compared to the traditional thermal method.

View Article and Find Full Text PDF

Single-atom catalysts have recently attracted considerable attention because of their highly efficient metal utilization and unique properties. Finding a green, facile method to synthesize them is key to their widespread commercialization. Here we show that single-atom catalysts (including iron, cobalt, nickel and copper) can be prepared via a top-down abrasion method, in which the bulk metal is directly atomized onto different supports, such as carbon frameworks, oxides and nitrides.

View Article and Find Full Text PDF

Oxygen evolution catalysis plays a crucial role in the solar-to-fuel conversion for green energy applications. However, developing efficient and stable catalysts for the oxygen evolution catalysis remains a great challenge. Here, we successfully activate an inefficient oxygen evolution catalyst using a simple single atom tailoring strategy.

View Article and Find Full Text PDF

Recently, studies of 2D organic layered materials with unique electronic properties have generated considerable interest in the research community. However, the development of organic materials with functional electrical transport properties is still needed. Here, a 2D fused aromatic network (FAN) structure with a C N basal plane stoichiometry is designed and synthesized, and thin films are cast from C N solution onto silicon dioxide substrates.

View Article and Find Full Text PDF

Single atom catalysts (SACs) are of great importance for oxygen reduction, a critical process in renewable energy technologies. The catalytic performance of SACs largely depends on the structure of their active sites, but explorations of highly active structures for SAC active sites are still limited. Herein, we demonstrate a combined experimental and theoretical study of oxygen reduction catalysis on SACs, which incorporate M-N C site structure, composed of atomically dispersed transition metals (e.

View Article and Find Full Text PDF

The one-step electrochemical synthesis of HO is an on-site method that reduces dependence on the energy-intensive anthraquinone process. Oxidized carbon materials have proven to be promising catalysts due to their low cost and facile synthetic procedures. However, the nature of the active sites is still controversial, and direct experimental evidence is presently lacking.

View Article and Find Full Text PDF

Developing efficient and stable electrocatalysts is crucial for the electrochemical production of pure and clean hydrogen. For practical applications, an economical and facile method of producing catalysts for the hydrogen evolution reaction (HER) is essential. Here, we report ruthenium (Ru) nanoparticles uniformly deposited on multi-walled carbon nanotubes (MWCNTs) as an efficient HER catalyst.

View Article and Find Full Text PDF

All quiet on the nitrogen front. The dissociation of stable diatomic nitrogen molecules (N) is one of the most challenging tasks in the scientific community and currently requires both high pressure and high temperature. Here, we demonstrate that N can be dissociated under mild conditions by cyclic strain engineering.

View Article and Find Full Text PDF

Hydrogen adsorption/desorption behavior plays a key role in hydrogen evolution reaction (HER) catalysis. The HER reaction rate is a trade-off between hydrogen adsorption and desorption on the catalyst surface. Herein, we report the rational balancing of hydrogen adsorption/desorption by orbital modulation using introduced environmental electronegative carbon/nitrogen (C/N) atoms.

View Article and Find Full Text PDF

Carbon-based catalysts have attracted much attention for the dehydrogenation (DH) of organic molecules, due to their rich active sites, high conversion efficiency, and selectivity. However, because of their poor stability at high operation temperature and relatively high cost, their practical applications have been limited. Here, we report a simple ball-milling-induced mechanochemical reaction which can introduce iron (Fe) and different functional groups (mostly stable aromatic C═O after heat-treatment) along the edges of graphitic nanoplatelets.

View Article and Find Full Text PDF

The direct conversion of biorenewable alcohols into value-added graphene and pure hydrogen (H ) at benign conditions is an important challenge, especially, considering the open carbon-reduced cycle. In this study, it is demonstrated that inexpensive calcium oxide (CaO, from eggshells) can transform alcohols into bulky nanoporous graphene and pure hydrogen (≈99%) with robust selectivity at the temperature as low as 500 °C. Consequently, the growth of graphene can follow the direction of alcohol flow and uniformly penetrate into bulky nanoporous CaO platelets longer than 1 m without clogging.

View Article and Find Full Text PDF

Here, we present oxygen-deficient black ZrO2-x as a new material for sunlight absorption with a low band gap around ~1.5 eV, via a controlled magnesiothermic reduction in 5% H2/Ar from white ZrO2, a wide bandgap(~5 eV) semiconductor, usually not considered for solar light absorption. It shows for the first time a dramatic increase in solar light absorbance and significant activity for solar light-induced H2 production from methanol-water with excellent stability up to 30 days while white ZrO2 fails.

View Article and Find Full Text PDF