Publications by authors named "Jong-Ning Aoh"

Friction Stir Welding (FSW) was utilized to butt-join 2024-T4 aluminum alloy plates of 1.9 mm thickness, using tools with conical and tapered hexagonal probe profiles. The characteristic effects of FSW using tools with tapered hexagonal probe profiles include an increase in the heat input and a significant modification of material flow, which have a positive effect on the metallurgical characteristics and mechanical performance of the weld.

View Article and Find Full Text PDF

The elastic range in loading-unloading processes is often reduced with a Bauschinger effect. This material property may have a high impact on residual stresses and, as a result, on the performance of autofrettaged cylinders under service conditions. The objective of the present paper is to demonstrate this impact using a material model that accounts for the response of typical high-strength steel.

View Article and Find Full Text PDF

In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand.

View Article and Find Full Text PDF