Publications by authors named "Jong-Myung Kim"

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides.

View Article and Find Full Text PDF

Glioblastoma (GBM) ranks among the most lethal of human malignancies with GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. Identification and isolation of GSCs continue to be a challenge, as definitive methods to purify these cells for study or targeting are lacking. Here, we leveraged orthogonal in vitro and in vivo phage display biopanning strategies to isolate a single peptide with GSC-specific binding properties.

View Article and Find Full Text PDF

A three-phase culture system combining blue (465 nm) light-emitting diode (LED) wavelength as the first phase, green (550 nm) as the second phase, and temperature stress as the third phase was applied to a Nannochloropsis oceanica culture in 14-L photobioreactors. Microalgal growth promotion parameters were optimized in the first phase, followed by green LED stress for lipid production in the second phase. Maximum biomass and lipid production values of 0.

View Article and Find Full Text PDF

Background: Identifying risk factors that contribute to shoulder and elbow pain within youth baseball players is important for improving injury prevention and rehabilitation strategies.

Hypothesis: Differences will exist between youth baseball players with and without a history of upper extremity pain on measures related to growth, shoulder performance, and baseball exposure.

Study Design: Case-control study; Level of evidence, 3.

View Article and Find Full Text PDF

In order to evaluate whether the aqueous fraction of Cinnamomum cassia produced by solid-state fermentation with Phellinus baumii (afCc/Pb) inhibits atopic symptoms in vivo, its efficacy was evaluated in an animal model of 2,4-dinitrofluorobenzene (DNFB)-induced atopic dermatitis. Immune-related cells were quantified using hematoxylin and eosin staining, and phenotypic cytokines, enzymes and the expression of other proteins in the animal model were evaluated. The data revealed that afCc/Pb (100 µg/ml) exhibited strong anti-atopic activity, causing a significant 40% reduction in immune response, as shown by the extent of ear swelling, resulting from a decrease in the number of eosinophils in the skin tissues due to decreased matrix metalloproteinase-2 and interleukin-31 expression.

View Article and Find Full Text PDF

To determine whether aqueous and ethanol fractions of the Angelica keiskei leaf exert toxicity when used for cosmetic purposes, we performed the acute eye irritancy test. Animals were treated with sample fractions (100 mg/dose) according to standard procedure guidelines. No significant changes or damage was detected in the fraction-treated groups in terms of ocular lesions in the cornea, the size of the cornea with turbidity, swelling of the eyelid and emission discharge.

View Article and Find Full Text PDF

In this study, we determined the effect of TNF-α on hBMSCs proliferation as well as the role of IL-1 receptor-associated kinase 1 (IRAK1) on TNF-α signaling. Western blot analysis revealed that TNF-α treatment increased the phosphorylation of IRAK1 in hBMSCs. The downregulation of IRAK1 inhibited TNF-α-induced NF-ĸB activation and COX-2 expression.

View Article and Find Full Text PDF

Previous studies have shown that functionalized gold nanoparticles (AuNPs) can be used as a general platform for loading and delivering DNA oligonucleotides and short hairpin RNA to living systems. Here, we report the ability of functionalized AuNP to deliver RNA aptamers into the nuclei of human cells. An in vitro-synthesized RNA aptamer specific to the β-catenin protein was delivered into the HepG2 human cell line more efficiently via functionalized AuNP than liposome-based delivery, and resulted in nearly complete inhibition of β-catenin binding to the p50 subunit of NF-κB in the nucleus.

View Article and Find Full Text PDF

A prerequisite for the therapeutic use of small RNAs is the development of a method that can deliver them into animals. Previous studies have shown the capability of functionalized gold nanoparticles to serve as a general platform for loading and delivering DNA oligonucleotides and short hairpin RNAs (shRNAs) into cultured human cells. Here, we report the ability of the gold nanoparticle-assisted gene delivery system (AuNP-GDS) to deliver shRNA to a xenograft tumor in a mouse model.

View Article and Find Full Text PDF

Using a specialized ribosome system, previous studies have identified G791 in Escherichia coli 16S rRNA as an invariant and essential residue for ribosome function. To investigate the functional role of G791, we searched for multicopy suppressors that partially restored the protein synthesis ability of mutant ribosomes bearing a G to U substitution at position 791 (U791 ribosomes). Analyses of isolated multicopy suppressors showed that overexpression of initiation factor 1 (IF1) enhanced the protein synthesis ability of U791 ribosomes.

View Article and Find Full Text PDF

β-catenin is a component of the adhesion complex linking cadherin and actin cytoskeleton, as well as a major mediator of the Wnt pathway, which is a critical signal cascade regulating embryonic development, cell polarity, carcinogenesis, and stem cell function. NF-κB functions as a key regulator of immune responses and apoptosis, and mutations in NF-κB signaling can lead to immune diseases and cancers. We previously showed that NF-κB-mediated modulation of β-catenin/Tcf signaling is mediated by leucine zipper tumor suppressor 2 (Lzts2) and that lzts2 expression is differentially regulated in various cancer cells.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-alpha) is a skeletal catabolic agent that stimulates osteoclastogenesis and inhibits osteoblast function. Although TNF-alpha inhibits the mineralization of osteoblasts, the effect of TNF-alpha on mesenchymal stem cells (MSC) is not clear. In this study, we determined the effect of TNF-alpha on osteogenic differentiation of stromal cells derived from human adipose tissue (hADSC) and the role of NF-kappaB activation on TNF-alpha activity.

View Article and Find Full Text PDF

CW-270031 is a novel synthesized carbapenem antibiotic with a broad antimicrobial activity. Carbapenem antibiotics are well known for their nephrotoxicity. In this study, we evaluated the nephrotoxicity potential of this compound in rabbits, which are known for being more sensitive than other animals to renal insult.

View Article and Find Full Text PDF

Structural analyses have shown that nucleotides at the positions 770 and 771 of Escherichia coli 16S rRNA are implicated in forming one of highly conserved intersubunit bridges of the ribosome, B2c. To examine a functional role of these residues, base substitutions were introduced at these positions and mutant ribosomes were analyzed for their protein synthesis ability using a specialized ribosome system. The results showed requirement of a pyrimidine at the position 770 for ribosome function regardless of the nucleotide identity at the position 771.

View Article and Find Full Text PDF

The size and diversity of ribosome display libraries depends upon stability of the complex formed between the ribosome, mRNA and translated protein. To investigate if mRNA secondary structure improves stability of the complex, we tested a pseudoknot, originating from the genomic RNA of infectious bronchitis virus (IBV), a member of the positive-stranded coronavirus group. We used the previously-isolated anti-DNA scFv, 3D8, as a target protein.

View Article and Find Full Text PDF