A method is proposed for fault classification in milling machines using advanced image processing and machine learning. First, raw data are obtained from real-world industries, representing various fault types (tool, bearing, and gear faults) and normal conditions. These data are converted into two-dimensional continuous wavelet transform (CWT) images for superior time-frequency localization.
View Article and Find Full Text PDFAccurate and reliable bearing-fault diagnosis is important for ensuring the efficiency and safety of industrial machinery. This paper presents a novel method for bearing-fault diagnosis using Mel-transformed scalograms obtained from vibrational signals (VS). The signals are windowed and pass through a Mel filter bank, converting them into a Mel spectrum.
View Article and Find Full Text PDFDetecting pipeline leaks is an essential factor in maintaining the integrity of fluid transport systems. This paper introduces an advanced deep learning framework that uses continuous wavelet transform (CWT) images for precise detection of such leaks. Transforming acoustic signals from pipelines under various conditions into CWT scalograms, followed by signal processing by non-local means and adaptive histogram equalization, results in new enhanced leak-induced scalograms (ELIS) that capture detailed energy fluctuations across time-frequency scales.
View Article and Find Full Text PDFThe prediction of the remaining useful life (RUL) is important for the conditions of rotating machinery to maintain reliability and decrease losses. This study proposes an efficient approach based on an adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD) and a convolutional LSTM autoencoder to achieve the feature extraction, health index analysis, and RUL prediction for rotating machinery. First, the ACYCBD is used to filter noise from the vibration signals.
View Article and Find Full Text PDFThis study introduces an innovative approach for fault diagnosis of a multistage centrifugal pump (MCP) using explanatory ratio (ER) linear discriminant analysis (LDA). Initially, the method addresses the challenge of background noise and interference in vibration signals by identifying a fault-sensitive frequency band (FSFB). From the FSFB, raw hybrid statistical features are extracted in time, frequency, and time-frequency domains, forming a comprehensive feature pool.
View Article and Find Full Text PDFThis paper proposes a new fault diagnosis method for centrifugal pumps by combining signal processing with deep learning techniques. Centrifugal pumps facilitate fluid transport through the energy generated by the impeller. Throughout the operation, variations in the fluid pressure at the pump's inlet may impact the generalization of traditional machine learning models trained on raw statistical features.
View Article and Find Full Text PDFTo prevent potential instability the early detection of cracks is imperative due to the prevalent use of concrete in critical infrastructure. Automated techniques leveraging artificial intelligence, machine learning, and deep learning as the traditional manual inspection methods are time-consuming. The existing automated concrete crack detection algorithms, despite recent advancements, face challenges in robustness, particularly in precise crack detection amidst complex backgrounds and visual distractions, while also maintaining low inference times.
View Article and Find Full Text PDFThis paper proposes a novel approach to predicting the useful life of rotating machinery and making fault diagnoses using an optimal blind deconvolution and hybrid invertible neural network. First, a new optimal adaptive maximum second-order cyclostationarity blind deconvolution (OACYCBD) is developed for denoising vibration signals obtained from rotating machinery. This technique is obtained from the optimization of traditional adaptive maximum second-order cyclostationarity blind deconvolution (ACYCBD).
View Article and Find Full Text PDFThis paper proposes a novel and reliable leak-detection method for pipeline systems based on acoustic emission (AE) signals. The proposed method analyzes signals from two AE sensors installed on the pipeline to detect leaks located between these two sensors. Firstly, the raw AE signals are preprocessed using empirical mode decomposition.
View Article and Find Full Text PDFIn this paper, an approach to perform leak state detection and size identification for industrial fluid pipelines with an acoustic emission (AE) activity intensity index curve (AIIC), using b-value and a random forest (RF), is proposed. Initially, the b-value was calculated from pre-processed AE data, which was then utilized to construct AIICs. The AIIC presents a robust description of AE intensity, especially for detecting the leaking state, even with the complication of the multi-source problem of AE events (AEEs), in which there are other sources, rather than just leaking, contributing to the AE activity.
View Article and Find Full Text PDFThis work presents a technique for fault detection and identification in centrifugal pumps (CPs) using a novel fault-specific Mann-Whitney test (FSU Test) and K-nearest neighbor (KNN) classification algorithm. Traditional fault indicators, such as the mean, peak, root mean square, and impulse factor, lack sensitivity in detecting incipient faults. Furthermore, for defect identification, supervised models rely on pre-existing knowledge about pump defects for training purposes.
View Article and Find Full Text PDFThis paper proposes an intelligent framework for the fault diagnosis of centrifugal pumps (CPs) based on wavelet coherence analysis (WCA) and deep learning (DL). The fault-related impulses in the CP vibration signal are often attenuated due to the background interference noises, thus affecting the sensitivity of the traditional statistical features towards faults. Furthermore, extracting health-sensitive information from the vibration signal needs human expertise and background knowledge.
View Article and Find Full Text PDFThis paper presents a novel framework for classifying ongoing conditions in centrifugal pumps based on signal processing and deep learning techniques. First, vibration signals are acquired from the centrifugal pump. The acquired vibration signals are heavily affected by macrostructural vibration noise.
View Article and Find Full Text PDFPipelines play a significant role in liquid and gas resource distribution. Pipeline leaks, however, result in severe consequences, such as wasted resources, risks to community health, distribution downtime, and economic loss. An efficient autonomous leakage detection system is clearly required.
View Article and Find Full Text PDFSensors (Basel)
January 2023
Bearings are critical components of motors. However, they can cause several issues. Proper and timely detection of faults in the bearings can play a decisive role in reducing damage to the entire system, thereby reducing economic losses.
View Article and Find Full Text PDFIn this study, a scheme for leak localization on a cylinder tank bottom using acoustic emission (AE) is proposed. This approach provides a means of early failure detection, thus reducing financial damage and hazards to the environment and users. The scheme starts with the hit detection process using a constant false alarm rate (CFAR) and a fixed thresholding method for a time of arrival (TOA) and an end-time determination.
View Article and Find Full Text PDFIn the machine learning and data science pipelines, feature extraction is considered the most crucial component according to researchers, where generating a discriminative feature matrix is the utmost challenging task to achieve high classification accuracy. Generally, the classical feature extraction techniques are sensitive to the noisy component of the signal and need more time for training. To deal with these issues, a comparatively new feature extraction technique, referred to as a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a framework for bearing fault classification in this paper.
View Article and Find Full Text PDFSensors (Basel)
October 2022
Rotating machinery plays an important role in industrial systems, and faults in the machinery may damage the system health. A novel image-based diagnosis method using improved deep convolutional generative adversarial networks (DCGAN) is proposed for the feature recognition and fault classification of rotating machinery. First, vibration signal data from the rotating machinery is transformed into time-frequency feature 2-D image data by a continuous wavelet transform and used for fault classification with the neural network method.
View Article and Find Full Text PDFA novel intelligent centrifugal pump (CP) fault diagnosis method is proposed in this paper. The method is based on the contrast in vibration data obtained from a centrifugal pump (CP) under several operating conditions. The vibration signals data obtained from a CP are non-stationary because of the impulses caused by different faults; thus, traditional time domain and frequency domain analyses such as fast Fourier transform and Walsh transform are not the best option to pre-process the non-stationary signals.
View Article and Find Full Text PDFDiagnostics of mechanical problems in manufacturing systems are essential to maintaining safety and minimizing expenditures. In this study, an intelligent fault classification model that combines a signal-to-image encoding technique and a convolution neural network (CNN) with the motor-current signal is proposed to classify bearing faults. In the beginning, we split the dataset into four parts, considering the operating conditions.
View Article and Find Full Text PDFUsing an adaptive noise canceling technique (ANCT) and distance ratio principal component analysis (DRPCA), this paper proposes a new fault diagnostic model for multi-degree tooth-cut failures (MTCF) in a gearbox operating at inconsistent speeds. To account for background and disturbance noise in the vibration characteristics of gear failures, the proposed approach employs ANCT in the first stage to optimize vibration signals. The ANCT applies an adaptive denoising technique to each basic frequency segment in the whole frequency response of vibrations.
View Article and Find Full Text PDFAcoustic emission techniques are widely used to monitor industrial pipelines. Intelligent methods using acoustic emission signals can analyze acoustic waves and provide important information for leak detection and localization. To address safety and protect the operation of industrial pipelines, a novel hybrid approach based on acoustic emission signals is proposed to achieve reliable leak localization.
View Article and Find Full Text PDFThis paper proposes a new technique for the construction of a concrete-beam health indicator based on the Kullback-Leibler divergence (KLD) and deep learning. Health indicator (HI) construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the health of concrete structures. Through the construction of a HI, the deterioration process can be processed and portrayed so that it can be forwarded to a prediction module for RUL prognosis.
View Article and Find Full Text PDFSensors (Basel)
February 2022
This paper proposes a reliable technique for pipeline leak detection using acoustic emission signals. The acoustic emission signal of a pipeline contains leak-related information. However, the noise in the signal often obscures the leak-related information, making traditional acoustic emission features, such as count and peaks, less effective.
View Article and Find Full Text PDF