Publications by authors named "Jong-Kook Park"

Electrolytic ablation (EA) is a burgeoning treatment for solid tumors, in which electrical energy catalyzes a chemical reaction to generate reactive species that can eradicate cancer cells. However, the application of this technique has been constrained owing to the limited spatial effectiveness and complexity of the electrode designs. Therefore, the incorporation of nanotechnology into EA is anticipated to be a significant improvement.

View Article and Find Full Text PDF

Background: Recently, natural killer (NK) cells emerged as a treatment option for various solid tumors. However, the immunosuppressive tumor immune microenvironment (TIME) can reduce the cytotoxic ability of NK cells in pancreatic ductal adenocarcinoma. Cancer-associated fibroblasts within the tumor stroma can suppress immune surveillance by dysregulating factors involved in the cellular activity of NK cells.

View Article and Find Full Text PDF
Article Synopsis
  • GSTpi is an important enzyme that helps protect cells from oxidative stress and is involved in key cellular processes, but its specific role in preventing dopamine cell death is not well studied.
  • This research explored the effects of a cell-permeable Tat-GSTpi fusion protein in both human dopamine-like SH-SY5Y cells and a mouse model of Parkinson's disease, showing that it reduced DNA damage and increased cell survival.
  • The findings suggest that Tat-GSTpi offers protection against neuronal death associated with Parkinson's disease, providing insights into potential mechanisms for treating neurodegenerative disorders.
View Article and Find Full Text PDF
Article Synopsis
  • GSTA2 is a protein that helps detoxify cells from oxidative stress, which is linked to ischemic injury, but its role in this context was previously unclear.
  • Researchers used a special version of GSTA2 (PEP-1-GSTA2) that can enter cells easily, finding that it protects cells from death by reducing harmful reactive oxygen species and DNA damage.
  • In animal studies, PEP-1-GSTA2 not only preserved brain cells but also reduced inflammation, suggesting its potential in developing treatments for injuries caused by oxidative stress.
View Article and Find Full Text PDF

Tumor priming is considered a promising strategy for improving drug distribution in malignant tissues. Multicellular layers (MCLs) of human cancer cells are potentially useful models for evaluating tumor-priming agents. We evaluated the priming effects of paclitaxel (PTX) on doxorubicin (DOX) penetration using MCLs of the human colorectal cancer cell lines including DLD-1, HCT-116, and HT-29.

View Article and Find Full Text PDF

It is well known that oxidative stress is highly associated with Parkinson's disease (PD), and biliverdin reductase A (BLVRA) is known to have antioxidant properties against oxidative stress. In this study, we developed a novel N-acetylgalactosamine kinase (GK2) protein transduction domain (PTD) derived from adenosine A2A and fused with BLVRA to determine whether the GK2-BLVRA fusion protein could protect dopaminergic neuronal cells (SH-SY5Y) from oxidative stress in vitro and in vivo using a PD animal model. GK2-BLVRA was transduced into various cells, including SH-SY5Y cells, without cytotoxic effects, and this fusion protein protected SH-SY5Y cells and reduced reactive oxygen species production and DNA damage after 1-methyl-4-phenylpyridinium (MPP ) exposure.

View Article and Find Full Text PDF

CYP105D18 supports HO as an oxygen surrogate for catalysis well and shows high HO resistance capacity. We report the hydroxylation of different steroids using HO as a cosubstrate. Testosterone was regiospecifically hydroxylated to 2β-hydroxytestosterone.

View Article and Find Full Text PDF

Olanzapine (OLZ), a widely used second-generation antipsychotic drug, is known to cause metabolic side effects, including diabetes and obesity. Interestingly, OLZ-induced metabolic side effects have been demonstrated to be more profound in females in human studies and animal models. Metformin (MET) is often used as a medication for the metabolic side effects of OLZ.

View Article and Find Full Text PDF

Background/aim: Patients with breast cancer frequently encounter a dismal prognosis due to the lack of effective and curative therapies. MicroRNAs (miRNAs) are aberrantly regulated in many types of cancer and have been recognized to play crucial roles in cancer progression. We performed a preclinical investigation of the anti-cancer effect of etoposide and microRNA-205-5p (miRNA-205-5p) and their relationship in MCF-7 cells.

View Article and Find Full Text PDF

Glucosyltransferases catalyze the glucosidic bond formation by transferring a glucose molecule from an activated sugar donor to an acceptor substrate. Glucocorticoids (GCs) are adrenal-derived steroid hormones most widely used for anti-inflammatory treatments. In this study, we biotransformed two selected GCs, cortisone and prednisone, into their O-glucoside derivatives using a versatile UDP-glycosyltransferase UGT-1.

View Article and Find Full Text PDF

Antipsychotics have been widely accepted as a treatment of choice for psychiatric illnesses such as schizophrenia. While atypical antipsychotics such as aripiprazole are not associated with obesity and diabetes, olanzapine is still widely used based on the anticipation that it is more effective in treating severe schizophrenia than aripiprazole, despite its metabolic side effects. To address metabolic problems, metformin is widely prescribed.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells.

View Article and Find Full Text PDF

Activated pancreatic stellate cells (aPSCs) and M2 macrophages modulate tumor progression and therapeutic efficacy in pancreatic ductal adenocarcinoma (PDAC) via epithelial-mesenchymal transition (EMT). Here, our aim was to analyze the anti-invasion effects of anti-cancer agents where EMT-inducing cancer-stroma interaction occurs under three-dimensional (3D) culture conditions. We used microfluidic channel chips to co-culture pancreatic tumor spheroids (TSs) with aPSCs and THP-1-derived M2 macrophages (M2 THP-1 cells) embedded in type I collagen.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling.

View Article and Find Full Text PDF

Hypoxia is one of the representative microenvironment features in cancer and is considered to be associated with the dismal prognosis of patients. Hypoxia-driven cellular pathways are largely regulated by hypoxia-inducible factors (HIFs) and notably exert influence on the hallmarks of cancer, such as stemness, angiogenesis, invasion, metastasis, and the resistance towards apoptotic cell death and therapeutic resistance; therefore, hypoxia has been considered as a potential hurdle for cancer therapy. Growing evidence has demonstrated that long noncoding RNAs (lncRNAs) are dysregulated in cancer and take part in gene regulatory networks owing to their various modes of action through interacting with proteins and microRNAs.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

View Article and Find Full Text PDF

Therapeutic resistance is an inevitable impediment towards effective cancer therapies. Evidence accumulated has shown that the signaling pathways and related factors are fundamentally responsible for therapeutic resistance via regulating diverse cellular events, such as epithelial-to-mesenchymal transition (EMT), stemness, cell survival/apoptosis, autophagy, etcetera. Noncoding RNAs (ncRNAs) have been identified as essential cellular components in gene regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Oxidative stress contributes significantly to neuronal disorders such as brain ischemic injury, with Thioredoxin 1 (Trx1) playing a key role due to its antioxidant and anti-apoptotic properties.
  • Research using a modified version of Trx1 (Tat-Trx1) demonstrated its ability to protect neuronal cells from hydrogen peroxide-induced death by reducing reactive oxygen species (ROS) and regulating key signaling pathways.
  • In an animal model of ischemia, Tat-Trx1 showed protective effects on hippocampal neurons and decreased activation of harmful glial cells, suggesting its potential as a therapeutic agent for ischemic brain injuries.
View Article and Find Full Text PDF

Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells.

View Article and Find Full Text PDF

Aldose reductase (AR) is known to detoxify aldehydes and prevent oxidative stress. Although AR exerts antioxidant effects, the role of AR in Parkinson's disease (PD) remains unclear. The objective of the present study was to investigate the protective effects of AR protein against 1‑methyl‑4‑phenylpyridinium (MPP+)‑induced SH‑SY5Y cell death and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine (MPTP)‑induced PD in a mouse model using the cell permeable Tat‑AR fusion protein.

View Article and Find Full Text PDF

Three-dimensional (3D) culture of tumor spheroids (TSs) within the extracellular matrix (ECM) represents a microtumor model that recapitulates human solid tumors in vivo, and is useful for 3D multiplex phenotypic analysis. However, the low efficiency of 3D culture and limited 3D visualization of microtumor specimens impose technical hurdles for the evaluation of TS-based phenotypic analysis. Here, we report a 3D microtumor culture-to-3D visualization system using a minipillar array chip combined with a tissue optical clearing (TOC) method for high-content phenotypic analysis of microtumors.

View Article and Find Full Text PDF

Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities.

View Article and Find Full Text PDF

Pancreatic cancer is malignant and the seventh leading cause of cancer-related deaths worldwide. However, chemotherapy and radiotherapy are-at most-moderately effective, indicating the need for new and different kinds of therapies to manage this disease. It has been proposed that the biologic properties of pancreatic cancer cells are finely tuned by the dynamic microenvironment, which includes extracellular matrix, cancer-associated cells, and diverse immune cells.

View Article and Find Full Text PDF

It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionuv7ve3clfiniiala1roo5gfc12h7dkqe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once