Publications by authors named "Jong-Kil Choo"

As a nuclear phosphoprotein, proto-oncogene protein DEK is capable to changing chromatin structure. DEK was recently identified as an inhibitor of histone acetylation mediated by p300 and PCAF and to facilitate transcriptional repression. To elucidate the biological functions of DEK in vivo, we have constructed transgenic flies that overexpress the human DEK in the developing eye.

View Article and Find Full Text PDF

The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification.

View Article and Find Full Text PDF

The proto-oncogene protein DEK has been implicated in the t(6;9) chromosomal translocation associated with a subtype of acute myelogenous leukemia (AML), which results in the formation of a DEK-CAN fusion protein. Histone acetylation is an important post-translational modification which is involved in transcriptional regulation. In this study, we report that the acidic domain containing protein DEK interacts with histones and exerts a potent inhibitory effect on both p300 and PCAF-mediated histone acetyltransferase activity and transcription.

View Article and Find Full Text PDF

Neuropeptides regulate a wide range of animal behavior including food consumption, circadian rhythms, and anxiety. Recently, Drosophila neuropeptide F, which is the homolog of the vertebrate neuropeptide Y, was cloned, and the function of Drosophila neuropeptide F in feeding behaviors was well characterized. However, the function of the structurally related short neuropeptide F (sNPF) was unknown.

View Article and Find Full Text PDF

The Hox genes of the oligochaete, Perionyx excavatus, were surveyed using PCR and phylogenetic analysis. We were able to identify 11 different Hox gene fragments. Comparative and phylogenetic analyses revealed that this oligochaete would have at least five Hox genes of the anterior group, including three copies of labial-type, five of the central group and one of the posterior group.

View Article and Find Full Text PDF