Manipulating metal valence states and porosity in the metal-organic framework (MOF) by alloying has been a unique tool for creating high-valent metal sites and pore environments in a structure that are inaccessible by other methods, favorable for accelerating the catalytic activity towards sensing applications. Herein, we report Fe-driven formation of catalytic active Ni species in the amine-crafted benzene-dicarboxylate (BDC-NH)-based MOF as a high-performance electrocatalyst for glucose sensing. This work took the benefit of different bonding stability between BDC-NH ligand, and Fe and Ni metal precursor ions in the heterometallic NiFe-BDC-NH MOF.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs), widely used in several industrial fields, are not readily degradable thus, persist in environmental matrices, serving as a source of environmental toxicity to organisms. However, the effects of environmental weathering on nanomaterial toxicity remain unclear. Herein, we prepared aged-MWCNTs (a-CNTs) by incubating commercial pristine-MWCNTs (p-CNTs) for two years and compared their changes in physicochemical properties and toxic effects on zebrafish.
View Article and Find Full Text PDFDesigning two-dimensional (2D) heterostructures based on suitable energy materials is a promising strategy to achieve high-performance supercapacitors with hybridized transition metal and carbonaceous-based electrodes. The influence of each component and its content on the capacitor performance necessitates deeper insights. In this study, a 2D/2D heterostructure made of hierarchical pseudocapacitive cobalt phosphide/oxide and P-doped reduced graphene oxide (PrGO) nanosheets (CoP/CoO@PrGO) was fabricated using porous zeolitic-imidazolate framework precursor.
View Article and Find Full Text PDFSolar-energy-driven water purification is a promising technology for obtaining clean water during the current global climate crisis. Solar absorbers with high light absorption capacity and efficient energy conversion are critical components of solar-driven water evaporation and purification systems. Herein, we demonstrate that porous reduced graphene oxide (rGO)-based composite spheres facilitate efficient water evaporation and effective organic pollutant adsorption from water.
View Article and Find Full Text PDFA novel method for controlling reduced graphene oxide (rGO) wrinkles through a phase transition in a solution using a low critical solution temperature (LCST) polymer dispersant has been developed. The polymer dispersant is designed by control of architecture and composition using reversible addition-fragmentation chain transfer polymerization. Synthesized poly(2-(dimethylaminoethyl) methacrylate-block-styrene) (PDbS) can be successfully functionalized on the rGO surface via noncovalent functionalization.
View Article and Find Full Text PDFObesity caused by a high-fat diet (HFD) affects gut microbiota linked to the risk of type-2 diabetes (T2D). This study evaluates live cells and ethanolic extract (SEL) of Probio65 and Probio-093 as natural anti-diabetic compounds. In-vitro anti-diabetic effects were determined based on the inhibition of α-glucosidase and α-amylase enzymes.
View Article and Find Full Text PDFEchinops-like bimetallic CoNiP-CoNi alloy is synthesized from a metal-organic framework (MOF) and serves as an efficient catalyst for the oxygen evolution reaction (OER), with a low overpotential of 300 mV in 1 M KOH at 10 mA cm (η ). The cooperative effect of Ni and Co metal, as well as the interfacial properties of the integrated semiconducting phosphide/metallic alloy and electronic conductivity of the MOF-derived carbon regulate the performance of the catalyst. Moreover, the bimetallic CoNiP/CoNi alloy catalyst is interspersed with N-doped graphene, forming a triad catalyst that demonstrates superior activity towards the hydrogen evolution reaction (η =150 mV) and excellent durability, owing to interfacial effects of the triad catalyst, large electrochemical active surface area, and enhanced conductivity from N-doped graphene.
View Article and Find Full Text PDFThe fabrication of interpenetrated heterostructures from desirable energy materials for the development of efficient supercapacitors is promising yet challenging. Herein, a leaf-shaped cobalt phosphide/cobalt oxide heterostructure, (CoP)/CoO (0.44 > y > 0.
View Article and Find Full Text PDFZeolitic imidazolate framework (ZIF)-derived materials have been explored as promising electrode for energy storage, owing to their tunable composition, high porous structure, and heteroatom-based active sites. Herein, we report cobalt phosphide-draped N-doped carbon/graphene hybrid (CoP-NPC/GS) synthesized from ZIF-67 precursor via a single-step in-situ carbonization and phosphidation. The CoP-NPC/GS hybrid performed as a promising positive electrode with superior electrochemical performance - high capacitance (165 F g at 7 A g compared to 97 F g for CoP-NPC), enhanced rate capability, and promoted cycling stability (~88% after 10,000 cycles).
View Article and Find Full Text PDFSWCNTs were individually dispersed in ethylne glycol (EG) mild bath-type sonication using quaternized poly(furfuryl methacrylate)--(2-(dimethylamino)ethyl methacrylate) p(FMA--QDMAEMA) as a dispersing agent. QDMAEMA, which has alkyl groups, was more favorable to the dispersion ability of single walled carbon nanotubes (SWCNTs). The dispersion mechanism of SWCNTs in EG helical wrapping of polymer chains along their sidewalls was suggested based on transmission electron microscopic observation.
View Article and Find Full Text PDFComposite anodes for all solid-state lithium secondary batteries based on lithium titanate (Li₄TiO) were fabricated by a wet process. The effect of the content of polyethylene oxide in the lithium titanate composite anode on the interfacial control for enhancing the ionic conductivity and binding between the constituent materials in the electrode was examined. The content of Super-P and garnet-type lithium lanthanum zirconium oxide in the composite lithium titanate electrode was fixed and the electrochemical characteristics of a half-cell were evaluated as a function of the lithium titanate and polyethylene oxide content in the electrode, where the polyethylene oxide content was varied from 35-70 wt%.
View Article and Find Full Text PDFThe past decade has proven the competence of nanotechnology in almost all known fields. The evolution of nanotechnology today in the area of the food industry has been largely and has had a lot of contribution in the food processing, food package, and food preservation. The increasing global human population has come with growing population to be fed, and food production is not adjusted to at par with the growing population.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2017
Nickel oxide has been widely used in chemical sensing applications, because it has an excellent p-type semiconducting property with high chemical stability. Here, we present a novel technique of fabricating three-dimensional porous nitrogen-doped nickel oxide nanosheets as a highly sensitive NO₂ sensor. The elaborate nanostructure was prepared by a simple and effective hydrothermal synthesis method.
View Article and Find Full Text PDFThe outstanding electrical, optical, and mechanical properties of silver nanowire transparent electrodes are attractive for use in many optoelectronic devices, and the recent developments related to these electrodes have led to their commercialization. To more fully utilize the advantages of this technology, developing new process technologies in addition to performance improvements is important. In this report, we propose a novel ultra-simple patterning technology to generate a silver nanowire transparent layer and a unique patterned structure with continuously distributed silver nanowires without any etched areas.
View Article and Find Full Text PDFGraphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) are generally used to promote the electrical conductivity of the polymer nanocomposites. However, in spite of their superior properties, CNT's high cost has limited their commercial application, so far. Thus, the development of hybrid carbon nanomaterials (CNMs) composed of CNTs and cheaper CNMs such as carbon fibers (CFs), expanded graphites (EGs), and graphene nanoplatelets (GNPs) is important in terms of reducing the cost of CNT-based fillers.
View Article and Find Full Text PDFWe synthesized poly((furfuryl methacrylate)-co-(2-(dimethylamino)ethyl methacrylate)) (p(FMA-co-DMAEMA)) for the dispersion of single-walled carbon nanotubes (SWCNTs) while maintaining their high aspect ratios. The nanotubes' length and height were 2.0 μm and 2 nm, as determined by transmission electron microscopy and atomic force microscopy, respectively.
View Article and Find Full Text PDFGraphenes with a two-dimensional lattice of carbons have been widely employed in diverse applications owing to their excellent electrical, thermal, mechanical, and gas-barrier properties. However, the frequently-used reduced graphene oxide (rGO), which is synthesized from natural graphites by strong oxidation and subsequent reduction via highly toxic components, exhibits imperfect characteristics because of remaining defect sites on its basal planes. Therefore, in this work, we present a convenient way to prepare graphene nanoplatelets (GNPs) with minimized defect sites on their basal planes employing liquid-phase exfoliation of edge-functionalized expanded graphites (EGs) with amphiphilic organic molecules.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2013
An In/Ga-free doping method of zinc oxide (ZnO) is demonstrated utilizing a printable charge transfer doping layer (CTDL) based on (3-aminopropyl)triethoxysilane (APS) molecules. The self-assembled APS molecules placed on top of ZnO thin films lead to n-type doping of ZnO and filling shallow electron traps, due to the strong electron-donating characteristics of the amine group in APS molecules. The CTDL doping can tune the threshold voltage and the mobility of the ZnO thin-film transistors (TFTs) as one varies the grafting density of the APS molecules and the thickness of the underneath ZnO thin films.
View Article and Find Full Text PDFCarbon nanomaterials are generally used to promote the thermal conductivity of polymer composites. However, individual graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) limit the realization of the desirable thermal conductivity of the composite in both through- and in-plane directions. In this work, we present the thermal conductivity enhancement of the epoxy composite with carbon hybrid fillers composed of CNTs directly grown on the GNP support.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
April 2012
This study investigates the coupling modes of a-plane InGaN/GaN mutiquantum wells (MQWs) with single-walled carbon nanotubes (SWCNTs). The enhancement of light emissions at resonance photon energies can be explained by the surface plasmon coupling of the MQW-SWCNT hybrid structure. The photoluminescence (PL) enhancement ratios of the indigo (2.
View Article and Find Full Text PDFTo realize transparent conductive films based on single-walled carbon nanotubes (SWCNTs), we applied a spray coating process with transition metal doping to SWCNT networks. Schottky contacts between metallic and semiconducting SWCNTs changed to Ohmic contacts due to the reduction of metals on the SWCNT surfaces via direct conversion from solution.
View Article and Find Full Text PDFWe propose bis(trifluoromethanesulfonyl)imide [(CF(3)SO(2))(2)N](-) (TFSI) as a transparent strong electron-withdrawing p-type dopant in carbon nanotubes (CNTs). The conventional p-dopant, AuCl(3), has several drawbacks, such as hygroscopic effect, formation of Au clusters, decrease in transmittance, and high cost in spite of the significant increase in conductivity. TFSI is converted from bis(trifluoromethanesulfonyl)amine (TFSA) by accepting electrons from CNTs, subsequently losing a proton as a characteristic of a Brønsted acid, and has an inductive effect from atoms with high electronegativity, such as halogen, oxygen, and nitrogen.
View Article and Find Full Text PDFWe developed a new method to covalently attach well-defined polymers onto carbon nanotubes (CNTs) using a radical reaction. Well-defined poly(t-butyl acrylate) [p(tBA)] was first prepared by atom transfer radical polymerization, which formed radicals at the end of the polymer chain through an atom transfer. The generated radicals at the chain ends added CNTs to generate covalently functionalized p(tBA)-grafted CNTs.
View Article and Find Full Text PDFDouble-walled carbon nanotubes (DWCNTs) were synthesized by catalytic chemical vapor deposition using Fe-Mo/MgO as a catalyst at 1000 degrees C under the mixture of methane and hydrogen gas. The nanotubes were purified by acid but were not damaged. Thermogravimetric analysis revealed the purity of the tubes to be about 90%.
View Article and Find Full Text PDF