Publications by authors named "Jong-Chan Kim"

Article Synopsis
  • - Volkmann's ischemic contracture involves permanent muscle and nerve damage from insufficient blood flow, leading to flexion contractures, whereas pseudo-Volkmann's contracture shares similar symptoms but can fully recover without ischemic damage.
  • - A case study describes a 39-year-old man who experienced finger extension failure after blunt forearm trauma, showing progressive symptoms over two months despite no broken skin or bones.
  • - Surgical intervention after two years revealed severe muscle adhesions due to the trauma, and immediate recovery was achieved after the adhesions were released, suggesting a diagnosis of pseudo-Volkmann's contracture.
View Article and Find Full Text PDF

Photovoltaic power generation is influenced not only by variable environmental factors, such as solar radiation, temperature, and humidity, but also by the condition of equipment, including solar modules and inverters. In order to preserve energy production, it is essential to maintain and operate the equipment in optimal condition, which makes it crucial to determine the condition of the equipment in advance. This paper proposes a method of determining a degradation of efficiency by focusing on photovoltaic equipment, especially inverters, using LSTM (Long Short-Term Memory) for maintenance.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have used CRISPR/Cas9 to mutate eight genes in rice to create a plant-based system (PhytoRice®) that produces therapeutic monoclonal antibodies (mAbs) without plant-specific N-glycans, addressing immunogenicity concerns.
  • The resulting product, P-TMab, has the same amino acid sequence as the standard trastuzumab (TMab) but shows significantly improved effectiveness in inhibiting cancer cell proliferation and binding to immune receptors.
  • P-TMab also demonstrates better tumor uptake and lower liver uptake in a mouse model, suggesting that PhytoRice® offers a promising alternative to current mammalian cell systems for producing mAbs with enhanced therapeutic potential.
View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) are a heterogeneous population that play diverse roles in airway inflammation after exposure to allergens and infections. However, how ILCs respond after exposure to environmental toxins is not well understood. Here we show a novel method for studying the heterogeneity of rare lung ILC populations by magnetic enrichment for lung ILCs followed by particle-templated instant partition sequencing (PIP-seq).

View Article and Find Full Text PDF
Article Synopsis
  • A new device architecture called van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) uses molybdenum disulfide (MoS) channels with surface-oxidized metal gates to improve performance in field-effect transistors (FETs).
  • These MESFETs operate at low gate voltages under 0.5 volts and demonstrate ideal switching behavior due to the strong coupling at the Schottky junction, achieving minimal energy loss during operation.
  • The study shows that improving the interface between the metal gate and the MoS channel can enhance performance by eliminating unwanted states, leading to a new approach for developing efficient 2D electronic devices.
View Article and Find Full Text PDF

Purpose: For successful delivery of a solid vaccine formulation into the skin using microneedles, the solubility of an adjuvant should be considered because the decrease in the dissolution rate by the addition of adjuvant decreases the delivery efficiency of the vaccine.

Methods: In this study, cholera toxin A subunit 1 (CTA1) was examined as an adjuvant to Hepatitis B vaccine (HBV) microneedles because of its good water solubility, improved safety, and positive effect as shown in intramuscular administration of a liquid vaccine.

Results: All solid formulations with CTA 1 dissolved in in vivo mouse skin within 30 min, and they were successfully delivered into the skin.

View Article and Find Full Text PDF

Acetylated lignin (AL) can improve compatibility with commercial plastic polymers compared to existing lignin and can be used as an effective additive for eco-friendly biocomposites. For this reason, AL can be effectively incorporated into polylactic acid (PLA)-based biocomposites, but its biodegradation properties have not been investigated. In this study, biodegradation experiments were performed under mesophilic and thermophilic conditions to determine the effect of AL addition on the biodegradation characteristics of PLA-based biocomposites.

View Article and Find Full Text PDF

In this study, the intrinsic brittleness of poly(lactic acid) (PLA) was overcome by chemical modification using ethyl acetate-extracted lignin (EL) via cationic ring-opening polymerization (CROP). The CROP was conducted to promote homopolymerization under starvation of the initiator (oxyrane). This method resulted in the formation of lignin-based polyether (LPE).

View Article and Find Full Text PDF

Ecofriendly multifunctional films with only biomass-based components have gathered significant interest from researchers as next-generation materials. Following this trend, a TEMPO-oxidized cellulose nanofibril (TOCNF) film containing hydrophilic lignin (CL) was fabricated. To produce the lignin, peracetic acid oxidation was carried out, leading to the introduction of carboxyl groups into the lignin structure.

View Article and Find Full Text PDF

In this study, a chemically modified lignin additive was successfully prepared to improve the physicochemical properties of biodegradable polycaprolactone (PCL)-based nanofibers. The molecular weight and surface functional group characteristics of lignin were effectively controlled through a solvent fractionation process using ethanol. Then, PCL-g-lignin was successfully synthesized by using ethanol-fractionated lignin as a platform for the PCL grafting process.

View Article and Find Full Text PDF

Heterosynaptic neuromodulation is a key enabler for energy-efficient and high-level biological neural processing. However, such manifold synaptic modulation cannot be emulated using conventional memristors and synaptic transistors. Thus, reported herein is a three-terminal heterosynaptic memtransistor using an intentional-defect-generated molybdenum disulfide channel.

View Article and Find Full Text PDF

Constructing a mono-atom step-level ultra-flat material surface is challenging, especially for thin films, because it is prohibitively difficult for trillions of clusters to coherently merge. Even though a rough metal surface, as well as the scattering of carriers at grain boundaries, limits electron transport and obscures their intrinsic properties, the importance of the flat surface has not been emphasised sufficiently. In this study, we describe in detail the initial growth of copper thin films required for mono-atom step-level flat surfaces (MSFSs).

View Article and Find Full Text PDF

Lignin has different structural characteristics depending on the extraction conditions. In this study, three types of ethanol organosolv lignin (EOL) were produced under different extraction conditions involving the reaction temperature (140, 160, 180 °C), sulfuric acid concentration (0.5, 1, 1.

View Article and Find Full Text PDF

The evaporation and crystal growth rates of ZnO are highly anisotropic and are fastest on the Zn-terminated ZnO (0001) polar surface. Herein, we study this behavior by direct atomic-scale observations and simulations of the dynamic processes of the ZnO (0001) polar surface during evaporation. The evaporation of the (0001) polar surface is accelerated dramatically at around 300 °C with the spontaneous formation of a few nanometer-thick quasi-liquid layer.

View Article and Find Full Text PDF

Digital logic circuits are based on complementary pairs of n- and p-type field effect transistors (FETs) via complementary metal oxide semiconductor technology. In three-dimensional (3D) or bulk semiconductors, substitutional doping of acceptor or donor impurities is used to achieve p- and n-type FETs. However, the controllable p-type doping of low-dimensional semiconductors such as two-dimensional (2D) transition-metal dichalcogenides (TMDs) has proved to be challenging.

View Article and Find Full Text PDF

Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications. This has prompted numerous studies exploring copper oxidation and possible passivation strategies. In situ observations have, for example, shown that oxidation involves stepped surfaces: CuO growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces.

View Article and Find Full Text PDF

Although nanocellulose is an eco-friendly, high-performance raw material provided by nature, the agglomeration of nanocellulose that occurs during the drying process is the biggest obstacle to its advanced materialization and commercialization. In this study, a facile and simple nanocellulose drying system was designed using lignin, which is self-assembled together with cellulose in natural wood, as an eco-friendly additive. The addition of lignin not only minimized aggregation during the drying and dehydration process of nanocellulose but also ensured excellent redispersion kinetics and stability.

View Article and Find Full Text PDF

Purpose: An adequate minimal surgical margin for partial nephrectomy (PN) has not yet been conclusively established. Therefore, we aimed to compare PN recurrence rates according to surgical margin status and to establish an adequate minimal surgical margin.

Materials And Methods: We retrospectively studied patients with clinically localized renal cell carcinoma who underwent PN between 2005 and 2014.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating a rapid disintegration coating for MNs, allowing quicker drug release into the skin's interstitial fluid, which is essential for effective delivery.
  • The new formulation, particularly using HPMC, demonstrated rapid drug release and did not negatively impact liver or kidney function, showing promise for safe and effective transdermal applications.
View Article and Find Full Text PDF

The aim of this study is to establish prediction models for the non-destructive evaluation of the carbonization characteristics of lignin-derived hydrochars as a carbon material in real time. Hydrochars are produced via the hydrothermal carbonization of kraft lignins for 1-5 h in the temperature range of 175-250 °C, and as the reaction severity of hydrothermal carbonization increases, the hydrochar is converted to a more carbon-intensive structure. Principal component analysis using near-infrared spectra suggests that the spectral regions at 2132 and 2267 nm assigned to lignins and 1449 nm assigned to phenolic groups of lignins are informative bands that indicate the carbonization degree.

View Article and Find Full Text PDF

Quantum wells (QWs), enabling effective exciton confinement and strong light-matter interaction, form an essential building block for quantum optoelectronics. For two-dimensional (2D) semiconductors, however, constructing the QWs is still challenging because suitable materials and fabrication techniques are lacking for bandgap engineering and indirect bandgap transitions occur at the multilayer. Here, we demonstrate an unexplored approach to fabricate atomic-layer-confined multiple QWs (MQWs) via monolithic bandgap engineering of transition metal dichalcogenides and van der Waals stacking.

View Article and Find Full Text PDF

is known as attractive biomass, and it has been utilized for eucalyptus oil, furniture, and pulp and paper production that causes a significant amount of byproducts. Liquid hot water treatment depending on combined severity factor (CSF) was subjected to isolate hemicellulose fraction from and to produce xylooligosaccharides (XOS). The xylan extraction ratio based on the initial xylan content of the feedstock was maximized up to 77.

View Article and Find Full Text PDF

A robust Cu conductor on a glass substrate for thin-film μLEDs using the flash-induced chemical/physical interlocking between Cu and glass is reported. During millisecond light irradiation, CuO nanoparticles (NPs) on the display substrate are transformed into a conductive Cu film by reduction and sintering. At the same time, intensive heating at the boundary of CuO NPs and glass chemically induces the formation of an ultrathin Cu O interlayer within the Cu/glass interface for strong adhesion.

View Article and Find Full Text PDF

In general, lignin exhibits unpredictable and nonuniform thermal properties due to the structural variations caused by the extraction processes. Therefore, a systematic understanding of the correlation between the extraction conditions, structural characteristics, and properties is indispensable for the commercial utilization of lignin. In this study, the effect of extraction conditions on the structural characteristics of ethanol organosolv lignin (EOL) was investigated by response surface methodology.

View Article and Find Full Text PDF