Publications by authors named "Jong- Hyeok Park"

Suppressing over-oxidation is a crucial challenge for various chemical intermediate synthesis in heterogeneous catalysis. The distribution of oxidative species and the substrate coverage, governed by the direction of electron transfer, are believed to influence the oxidation extent. In this study, we presented an experimental realization of surface coverage modulation on a photoelectrode using a photo-induced charge activation method.

View Article and Find Full Text PDF

Nanopatterned halide perovskites have emerged to improve the performance of optoelectronic devices by controlling the crystallographic and optical properties via morphological modification. However, the correlation between the photophysical property and morphology transformation in nanopatterned perovskite films remains elusive, which hinders the rational design of nanopatterned halide perovskites for optoelectronic devices. In this study, we employed nanoimprinting lithography on a perovskite film to exert a precise control over grain growth and manipulate electronic structures at the level of individual grains.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) organic transformation at the anode coupled with cathodic H generation is a potentially rewarding strategy for efficient solar energy utilization. Nevertheless, achieving the full conversion of organic substrates with exceptional product selectivity remains a formidable hurdle in the context of heterogeneous catalysis at the solid/liquid interface. Here, we put forward a quasi-homogeneous catalysis concept by using the reactive oxygen species (ROS), such as ·OH, HO and SO, as a charge transfer mediator instead of direct heterogeneous catalysis at the solid/liquid interface.

View Article and Find Full Text PDF

Dihydroxyacetone is the most desired product in glycerol oxidation reaction because of its highest added value and large market demand among all possible oxidation products. However, selectively oxidative secondary hydroxyl groups of glycerol for highly efficient dihydroxyacetone production still poses a challenge. In this study, we engineer the surface of BiVO by introducing bismuth-rich domains and oxygen vacancies (Bi-rich BiVO) to systematically modulate the surface adsorption of secondary hydroxyl groups and enhance photo-induced charge separation for photoelectrochemical glycerol oxidation into dihydroxyacetone conversion.

View Article and Find Full Text PDF
Article Synopsis
  • - This study compared two software packages, RAPID and JLK-CTP, for estimating ischemic core and hypoperfused tissue volumes in stroke patients using computed tomography perfusion (CTP) scans.
  • - Researchers analyzed data from 327 patients, finding that both software packages showed excellent agreement in estimating ischemic core volumes, particularly at a blood flow threshold of less than 30%.
  • - Overall, JLK-CTP and RAPID proved to be reliable tools for assessing ischemic core volumes early after stroke onset, although there were some indications that they might slightly overestimate these volumes.
View Article and Find Full Text PDF

Anode-free (or lithium-metal-free) batteries with garnet-type solid-state electrolytes are considered a promising path in the development of safe and high-energy-density batteries. However, their practical implementation has been hindered by the internal strain that arises from the repeated plating and stripping of lithium metal at the interlayer between the solid electrolyte and negative electrode. Herein, we utilize the titanium nitrate nanotube architecture and a silver-carbon interlayer to mitigate the anisotropic stress caused by the recurring formation of lithium deposition layers during the cycling process.

View Article and Find Full Text PDF

The glycerol oxidation reaction (GOR) run with photoelectrochemical cells (PECs) is one of the most promising ways to upgrade biomass because it is thermodynamically favorable, while irreversible overoxidation leads to unsatisfactory product selectivities. Herein, a tunable one-dimensional nanoconfined environment was introduced into the GOR process, which accelerated mass transfer of glycerol via the microscale fluid effect and changed the main oxidation product from formic acid (FA) to glyceraldehyde (GLD), which led to retention of the heavier multicarbon products. The rate of glycerol diffusion in the nanochannels increased by a factor of 4.

View Article and Find Full Text PDF

H-driven microbial electrosynthesis (MES) is an emerging bioelectrochemical technology that enables the production of complex compounds from CO. Although the performance of microbial fermentation in the MES system is closely related to the H production rate, high-performing metallic H-evolving catalysts (HEC) generate cytotoxic HO and metal cations from undesirable side reactions, severely damaging microorganisms. Herein, a novel design for self-detoxifying metallic HEC, resulting in biologically benign H production, is reported.

View Article and Find Full Text PDF

Silicon (Si) anodes, free from the dendritic growth concerns found in lithium (Li) metal anodes, offer a promising alternative for high-energy all-solid-state batteries (ASSBs). However, most advancements in Si anodes have been achieved under impractical high operating pressures, which can mask detrimental electrochemo-mechanical issues. Herein, we effectively address the challenges related to the low-pressure operation of Si anodes in ASSBs by introducing an silver (Ag) interlayer between the solid electrolyte layer (LiPSCl) and anode and prelithiating the anodes.

View Article and Find Full Text PDF

Solid-state electrolyte batteries have attracted significant interest as promising next-generation batteries due to their achievable high energy densities and nonflammability. In particular, curable polymer network gel electrolytes exhibit superior ion conductivity and interfacial adhesion with electrodes compared to oxide or sulfide solid electrolytes, bringing them closer to commercialization. However, the limited electrochemical stability of matrix polymers, particularly those based on poly (ethylene oxide) (PEO), presents challenges in achieving stable electrochemical performance in high-voltage lithium metal batteries.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) organic transformations occurring at anodes are a promising strategy for circumventing the sluggish kinetics of the oxygen evolution reaction. Here, we report a free radical-mediated reaction instead of direct hole transfer occurring at the solid/liquid interface for PEC oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) with high selectivity. A bismuth vanadate (BiVO) photoanode coated with a 2,2'-bipyridine-based covalent organic framework bearing single Ni sites (Ni-TpBpy) was developed to drive the transformation.

View Article and Find Full Text PDF

In this study, blended perfluorinated sulfonic acid (PFSA) ionomers with equivalent weights (EWs, g/mol) of ~1000, 980, and 830 are prepared. Catalyst layers (CLs), using blended PFSA ionomers, with different side chain lengths and EWs are investigated and compared to CLs using single ionomers. The ion exchange capacity results confirm that blended ionomers have the target EWs.

View Article and Find Full Text PDF

Direct partial oxidation of methane to liquid oxygenates has been regarded as a potential route to valorize methane. However, CH activation usually requires a high temperature and pressure, which lowers the feasibility of the reaction. Here, we propose an electro-assisted approach for the partial oxidation of methane, using in-situ cathodically generated reactive oxygen species, at ambient temperature and pressure.

View Article and Find Full Text PDF

Purpose: Artificial intelligence (AI)-based image analysis tools to quantify the brain have become commercialized. However, insufficient data for learning and scanner specificity is a limitation for achieving high quality. In the present study, the performance of personalized brain segmentation software when applied to multicenter data using an AI model trained on data from a single institution was improved.

View Article and Find Full Text PDF

Lithium-oxygen batteries have the potential to become the most eminent solution for future energy storage with their theoretical energy density exceeding all existing batteries. However, the insulating and insoluble discharge product (lithium peroxide; LiO) impairs practical application. Conventional catalyst designs based on the electronic structure and interfacial charge transfer descriptors have not been able to overcome these limitations due to LiO.

View Article and Find Full Text PDF

Aqueous photoelectrochemical (PEC) cells have long been considered a promising technology to convert solar energy into hydrogen. However, the solar-to-H (STH) efficiency and cost-effectiveness of PEC water splitting are significantly limited by sluggish oxygen evolution reaction (OER) kinetics and the low economic value of the produced O , hindering the practical commercialization of PEC cells. Recently, organic upgrading PEC reactions, especially for alternative OERs, have received tremendous attention, which improves not only the STH efficiency but also the economic effectiveness of the overall reaction.

View Article and Find Full Text PDF

Facile synthesis of hierarchically porous metal-organic frameworks (MOFs) with adjustable porosity and high crystallinity attracts great attention yet remains challenging. Herein, a micromolar amount of dye-based modulator (Rhodamine B (RhB)) is employed to easily and controllably tailor the pore size of a Ti-based metal-organic framework (MIL-125-NH ). The RhB used in this method is easily removed by washing or photodegradation, avoiding secondary posttreatment.

View Article and Find Full Text PDF
Article Synopsis
  • Carbon monoxide (CO) is crucial for some chemical processes but is very toxic and can harm noble metal catalysts, making it necessary to have an effective adsorbent for CO, especially at low levels.
  • The study created zeolite Y-based adsorbents with Cu(I) ions to improve CO capture, using methods like solid-state ion exchange and finding enhanced adsorption due to π-complexation.
  • Interestingly, these adsorbents displayed high selectivity, allowing CO to pass through while blocking smaller molecules, with simulations indicating strong interactions between CO and the copper ions, leading to remarkable CO capturing capabilities.
View Article and Find Full Text PDF

Oxygen evolution reaction (OER) under acidic conditions becomes of significant importance for the practical use of a proton exchange membrane (PEM) water electrolyzer. In particular, maximizing the mass activity of iridium (Ir) is one of the maiden issues. Herein, the authors discover that the Ir-doped calcium copper titanate (CaCu₃Ti₄O₁₂, CCTO) perovskite exhibits ultrahigh mass activity up to 1000 A g for the acidic OER, which is 66 times higher than that of the benchmark catalyst, IrO .

View Article and Find Full Text PDF

The current lithium-ion battery (LIB) electrode fabrication process relies heavily on the wet coating process, which uses the environmentally harmful and toxic N-methyl-2-pyrrolidone (NMP) solvent. In addition to being unsustainable, the use of this expensive organic solvent substantially increases the cost of battery production, as it needs to be dried and recycled throughout the manufacturing process. Herein, we report an industrially viable and sustainable dry press-coating process that uses the combination of multiwalled carbon nanotubes (MWNTs) and polyvinylidene fluoride (PVDF) as a dry powder composite and etched Al foil as a current collector.

View Article and Find Full Text PDF

The photo-electrochemical (PEC) oxidation of glycerol (GLY) to high-value-added dihydroxyacetone (DHA) can be achieved over a BiVO photoanode, while the PEC performance of most BiVO photoanodes is impeded due to the upper limits of the photocurrent density. Here, an enhanced Mie scattering effect of the well-documented porous BiVO photoanode is obtained with less effort by a simple annealing process, which significantly reduces the reflectivity to near zero. The great light absorbability increases the basic photocurrent density by 1.

View Article and Find Full Text PDF

Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction.

View Article and Find Full Text PDF

Platelets are known to improve the wound-repair capacity of mesenchymal stem cells (MSCs) by transferring mitochondria intercellularly. This study aimed to investigate whether direct transfer of mitochondria (pl-MT) isolated from platelets could enhance wound healing using a cell-based model. Wound repairs were assessed by 2D gap closure experiment in wound scratch assay using human dermal fibroblasts (hDFs).

View Article and Find Full Text PDF

Water electrolysis is one of the attractive technologies for producing clean and sustainable hydrogen fuels with high purity. Among the various kinds of water electrolysis systems, anion exchange membrane water electrolysis has received much attention by combining the advantages of alkaline water electrolysis and proton exchange membrane water electrolysis. However, the sluggish kinetics of the oxygen evolution reaction, which is based on multiple and complex reaction mechanisms, is regarded as a major obstacle for the development of high-efficiency water electrolysis.

View Article and Find Full Text PDF