Publications by authors named "Jong Yun Han"

For recombinant production of squalene, which is a triterpenoid compound with increasing industrial applications, in microorganisms generally recognized as safe, we screened Saccharomyces cerevisiae strains to determine their suitability. A strong strain dependence was observed in squalene productivity among Saccharomyces cerevisiae strains upon overexpression of genes important for isoprenoid biosynthesis. In particular, a high level of squalene production (400 ± 45 mg/L) was obtained in shake flasks with the Y2805 strain overexpressing genes encoding a bacterial farnesyl diphosphate synthase (ispA) and a truncated form of hydroxyl-3-methylglutaryl-CoA reductase (tHMG1).

View Article and Find Full Text PDF

Metabolite production through a multistep metabolic pathway can often be increased by efficient substrate channeling created by spatial sequestration of the metabolic reactions. Here, Tya, a structural component in the Ty1 retrotransposon element that forms virus-like particles (VLPs) in Saccharomyces cerevisiae, was used to spatially organize enzymes involved in a metabolic pathway into a multi-enzyme protein body in yeast. As a proof of principle, Tya fusion to three key enzymes involved in biosynthesis of the isoprenoids farnesene and farnesol was tested to assess its potential to improve productivity.

View Article and Find Full Text PDF

GlxR is considered as a global transcriptional regulator controlling a large number of genes having broad physiological aspects in Corynebacterium glutamicum. However, the expression profile revealing the transcriptional control of glxR has not yet been studied in detail. DNA affinity chromatography experiments revealed the binding of transcriptional regulators SucR, RamB, GlxR, and a GntR-type protein (hereafter denoted as GntR3) to the upstream region of glxR.

View Article and Find Full Text PDF

Recently, enzymatic quorum quenching has proven its potential as an innovative approach for biofouling control in the membrane bioreactor (MBR) for advanced wastewater treatment. However, practical issues on the cost and stability of enzymes are yet to be solved, which requires more effective quorum quenching methods. In this study, a novel quorum quenching strategy, interspecies quorum quenching by bacterial cell, was elaborated and proved to be efficient and economically feasible biofouling control in MBR.

View Article and Find Full Text PDF