Plant Signal Behav
December 2024
The rice small protein OsS1Fa1, a homolog of spinach S1Fa, plays a significant role in drought tolerance, attributed to its transmembrane domain. In this study, we aim to further elucidate the potential roles of OsS1Fa1 in cold and biotic stresses as an inner nuclear membrane protein. Fluorescence analysis confirmed the localization of OsS1Fa1 to the inner nuclear membrane.
View Article and Find Full Text PDFDrought stress, which is becoming more prevalent due to climate change, is a significant abiotic factor that adversely impacts crop production and yield stability. Cultivated soybean (), a versatile crop for humans and animals, exhibits sensitivity to drought, resulting in reduced growth and development under drought conditions. However, few genetic studies have assessed wild soybean's () response to drought stress.
View Article and Find Full Text PDFSIZ1 (SAP and MIZ1) is a member of the Siz/PIAS-type RING family of E3 SUMO (small ubiquitin-related modifier) ligases that play key roles in growth, development, and stress responses in plant and animal systems. Nevertheless, splicing variants of SIZ1 have not yet been characterized. Here, we identified four splicing variants of Arabidopsis (Arabidopsis thaliana) SIZ1, which encode three different protein isoforms.
View Article and Find Full Text PDFRetromer protein AtVPS29 upregulates the SLY1 protein and downregulates the RGA protein, positively stimulating the development of the root meristematic zone, which indicates an important role of AtVPS29 in gibberellin signaling. In plants, the large retromer complex is known to play roles in multiple development processes, including cell polarity, programmed cell death, and root hair growth in Arabidopsis. However, many of its roles in plant development remain unknown.
View Article and Find Full Text PDFStomata are microscopic pores on epidermal cells of leaves and stems that regulate water loss and gas exchange between the plant and its environment. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase that is involved in plant growth and development and multiple abiotic stress responses by regulating the stability of various target proteins. However, little is known about how COP1 controls stomatal aperture and leaf temperature under various environmental conditions.
View Article and Find Full Text PDFThe E3 ubiquitin ligase Constitutive Photomorphogenic 1 (COP1) plays evolutionarily conserved and divergent roles. In plants, COP1 regulates a large number of developmental processes including photomorphogenesis, seedling emergence, and gravitropism. Nevertheless, its function in abiotic stress tolerance remains largely unknown.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) are known to play important roles in several plant processes such as flowering, organ development and stress response. However, studies exploring the diversity and complexity of lncRNAs and their mechanism of action in plants are far fewer that those in animals. Here, we show that an intronic lncRNA in rice (Oryza sativa L.
View Article and Find Full Text PDFStomatal observation and automatic stomatal detection are useful analyses of stomata for taxonomic, biological, physiological, and eco-physiological studies. We present a new clearing method for improved microscopic imaging of stomata in soybean followed by automated stomatal detection by deep learning. We tested eight clearing agent formulations based upon different ethanol and sodium hypochlorite (NaOCl) concentrations in order to improve the transparency in leaves.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2021
Arabidopsis PATATIN-RELATED PHOSPHOLIPASE 2A (pPLA-IIα) participates in the responses to various growth conditions. The factors affecting pPLA-IIα gene expression and pPLA-IIα protein activity for gycerolipids have been studied thoroughly, but the role of pPLA-IIα during the reproductive phase remains unclear. The effect of pPLA-IIα on flowering time was therefore investigated.
View Article and Find Full Text PDFThe mutants exhibit high SA accumulation and consequently severe dwarfism. Although mutants exhibit growth recovery upon exogenous ammonium supply, the underlying mechanism remains unknown. Here, we investigated the effect of ammonium on SA level and plant growth in SA-accumulating mutants.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases play a critical role in protein synthesis by catalyzing the covalent attachment of amino acids to their cognate tRNAs. However, the role of aminoacyl-tRNA synthetases in the transition from vegetative to reproductive growth in plants remains poorly understood. In this study, a rice () glycyl-tRNA synthetase 3, OsGlyRS3, was found to impact heading date in rice.
View Article and Find Full Text PDFThis present study was to identify a novel candidate gene that contributes to the elevated α-linolenic acid (ALA, ω-3) concentration in PE2166 from mutagenesis of Pungsannamul. Major loci and were detected on chromosome 5 of soybean through quantitative trait loci mapping analyses of recombinant inbred lines. With next-generation sequencing of parental lines and Pungsannamul and recombinant analyses, a potential gene, (), controlling elevated ALA concentration was identified.
View Article and Find Full Text PDFIn addition to proteins and/or oils, mature seeds of most legume crops contain important carbohydrate components, including starches and sugars. Starch is also an essential nutritional component of human and animal diets and has various food and non-food industrial applications. Starch is a primary insoluble polymeric carbohydrate produced by higher plants and consists of amylose and amylopectin as a major fraction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2019
Arabidopsis thaliana E3 SUMO ligase SIZ1 (AtSIZ1) controls vegetative growth and development, including responses to nutrient deficiency and environmental stresses. Here, we analyzed the effect of AtSIZ1 and its E3 SUMO ligase activity on the amount of seed proteins. Proteomic analysis showed that the level of three major nutrient reservoir proteins, CRUCIFERIN1 (CRU1), CRU2, and CRU3, was reduced in the siz1-2 mutant compared with the wild type.
View Article and Find Full Text PDF2,3-Dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) saponins are one of the major saponin groups that are widely distributed in legumes such as pea, barrel medic, chickpea, and soybean. The steps involved in DDMP saponin biosynthesis remain uncharacterized at the molecular level. We isolated two recessive mutants that lack DDMP saponins from an ethyl methanesulfonate-induced mutant population of soybean cultivar Pungsannamul.
View Article and Find Full Text PDFBackground: Seed size has been extensively studied in crop plants, as it determines crop yield. However, the mechanism of seed development remains elusive. In this study, we explored the mechanism of seed development in rice (Oryza sativa L.
View Article and Find Full Text PDFSubstantial improvements in access to food and increased purchasing power are driving many people toward consuming nutrition-rich foods causing an unprecedented demand for protein food worldwide, which is expected to rise further. Forage legumes form an important source of feed for livestock and have potential to provide a sustainable solution for food and protein security. Currently, alfalfa is a commercially grown source of forage and feed in many countries.
View Article and Find Full Text PDFSeed size is one of the most important traits determining the yield of cereal crops. Many studies have been performed to uncover the mechanism of seed development. However, much remains to be understood, especially at the molecular level, although several genes involved in seed size have been identified.
View Article and Find Full Text PDFNitrate reductases (NRs) catalyze the first step in the reduction of nitrate to ammonium. NR activity is regulated by sumoylation through the E3 ligase activity of AtSIZ1. However, it is not clear how NRs interact with AtSIZ1 in the cell, or how nitrogen sources affect NR levels and their cellular localization.
View Article and Find Full Text PDFIn soybean, triterpenoid saponin is one of the major secondary metabolites and is further classified into group A and DDMP saponins. Although they have known health benefits for humans and animals, acetylation of group A saponins causes bitterness and gives an astringent taste to soy products. Therefore, several studies are being conducted to eliminate acetylated group A saponins.
View Article and Find Full Text PDFWe investigated the biological roles of the Arabidopsis () GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) transcriptional complex in the development of gynoecia and anthers. There are nine and three in Arabidopsis, and seven are posttranscriptionally silenced by microRNA396 (miR396). We found that overexpression of in the double mutant background (:) resulted in neither ovary nor pollen.
View Article and Find Full Text PDFPhotoreceptors perceive different wavelengths of light and transduce light signals downstream via a range of proteins. COP1, an E3 ubiquitin ligase, regulates light signaling by mediating the ubiquitination and subsequent proteasomal degradation of photoreceptors such as phytochromes and cryptochromes, as well as various development-related proteins including other light-responsive proteins. COP1 is itself regulated by direct interactions with several signaling molecules that modulate its activity.
View Article and Find Full Text PDFSumoylation regulates numerous cellular functions in plants as well as in other eukaryotic systems. However, the regulatory mechanisms controlling E3 small ubiquitin-related modifier (SUMO) ligase are not well understood. Here, post-translational modification of the Arabidopsis E3 SUMO ligase AtSIZ1 was shown to be specifically controlled by abiotic stresses.
View Article and Find Full Text PDF