Publications by authors named "Jong Seob Lee"

Genomic imprinting, an epigenetic process in mammals and flowering plants, refers to the differential expression of alleles of the same genes in a parent-of-origin-specific manner. In Arabidopsis, imprinting occurs primarily in the endosperm, which nourishes the developing embryo. Recent high-throughput sequencing analyses revealed that more than 200 loci are imprinted in Arabidopsis; however, only a few of these imprinted genes and their imprinting mechanisms have been examined in detail.

View Article and Find Full Text PDF

Angiosperm reproduction is characterized by alternate diploid sporophytic and haploid gametophytic generations. Gametogenesis shares similarities with that of animals except for the formation of the gametophyte, whereby haploid cells undergo several rounds of postmeiotic mitosis to form gametes and the accessory cells required for successful reproduction. The mechanisms regulating gametophyte development in angiosperms are incompletely understood.

View Article and Find Full Text PDF

In flowering plants, fruit dehiscence enables seed dispersal. Here we report that ntt-3D, an activation tagged allele of NO TRANSMITTING TRACT (NTT), caused a failure of fruit dehiscence in Arabidopsis. We identified ntt-3D, in which the 35S enhancer was inserted adjacent to AT3G-57670, from our activation tagged mutant library.

View Article and Find Full Text PDF
Article Synopsis
  • Jasmonates (JAs) play a crucial role in how plants respond to various stresses and their development, with specific enzymes like AtJMT and BcNTR1 involved in producing methyl jasmonate (MeJA) and regulating JA signaling.
  • A new cis-element called JARE, identified in the AtJMT and BcNTR1 promoters, is responsive to jasmonic acid and distinct from previously known elements, and the trans-acting factor AtBBD1 binds to this element and interacts with JAZ proteins.
  • Studies show that AtBBD1 and its homologue AtBBD2 act as negative regulators of AtJMT expression, and their effects are linked to changes in histone acetylation in
View Article and Find Full Text PDF

CORONATINE INSENSITIVE 1 (COI1) encodes an E3 ubiquitin ligase complex component that interacts with JAZ proteins and targets them for degradation in response to JA signaling. The Arabidopsis genome has a single copy of COI1, but the Oryza sativa genome has three closely related COI homologs. To examine the functions of the three OsCOIs, we used yeast two-hybrid assays to examine their interactions with JAZ proteins and found that OsCOIs interacted with OsJAZs and with JAZs, in a coronatine dependent manner.

View Article and Find Full Text PDF

The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are a group of steroidal hormones involved in plant development. Although the BR biosynthesis pathways are well characterized, the BR inactivation process, which contributes to BR homeostasis, is less understood. Here, we show that a member of the BAHD (for benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, and deacetylvindoline 4-O-acetyltransferase) acyltransferase family may play a role in BR homeostasis in Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Transcriptional repression via methylation of histone H3 lysine 27 (H3K27) by the polycomb repressive complex 2 (PRC2) is conserved in higher eukaryotes. The Arabidopsis PRC2 controls homeotic gene expression, flowering time, and gene imprinting. Although downstream target genes and the regulatory mechanism of PRC2 are well understood, much less is known about the significance of posttranslational regulation of PRC2 protein activity.

View Article and Find Full Text PDF

Jasmonates play important roles in development, stress responses and defense in plants. Here, we report the results of a study using a functional genomics approach that identified a rice basic helix-loop-helix domain gene, OsbHLH148, that conferred drought tolerance as a component of the jasmonate signaling module in rice. OsbHLH148 transcript levels were rapidly increased by treatment with methyl jasmonate (MeJA) or abscisic acid, and abiotic stresses including dehydration, high salinity, low temperature and wounding.

View Article and Find Full Text PDF

The circadian clock in plants regulates many important physiological and biological processes, including leaf movement. We have used an imaging system to genetically screen Arabidopsis seedlings for altered leaf movement with the aim of identifying a circadian clock gene. A total of 285 genes were selected from publicly available microarrays that showed an expression pattern similar to those of the Arabidopsis core oscillator genes.

View Article and Find Full Text PDF

MADS-box genes encode a family of transcription factors that regulate diverse developmental programs in plants. The present work shows the regulation of flowering time by AGL6 through control of the transcription of both a subset of the FLOWERING LOCUS C (FLC) family genes and FT, two key regulators of flowering time. The agl6-1D mutant, in which AGL6 was activated by the 35S enhancer, showed an early flowering phenotype under both LD and SD conditions.

View Article and Find Full Text PDF

Transition to the flowering stage is precisely controlled by a few classes of regulatory molecules. BROTHER OF FT AND TFL1 (BFT) is a member of FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, an important class of flower development regulators with unidentified biochemical function. BFT has a TFL1-like activity and plays a role in axillary inflorescence development.

View Article and Find Full Text PDF

The FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family is a small gene family that encodes important regulators that control flower development in Arabidopsis. Here, we investigated the biological role of the product of BROTHER OF FT AND TFL1 (BFT), a member of this family, whose function remains unknown. Comparison of the critical residues that play a role in distinguishing FT- or TFL1-like activity revealed that BFT is more similar to FT.

View Article and Find Full Text PDF

Soybean SE60 belongs to the gamma-thionin family of proteins. We recently demonstrated that SE60 plays a role in defense during soybean development. Here, we show that SE60 is expressed in a tissue-specific and developmentally regulated manner.

View Article and Find Full Text PDF

The SE60, a low molecular weight, sulfur-rich protein in soybean, is known to be homologous to wheat gamma-purothionin. To elucidate the functional role of SE60, we expressed SE60 cDNA in Escherichia coli and in tobacco plants. A single protein band was detected by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) after anti-FLAG affinity purification of the protein from transformed E.

View Article and Find Full Text PDF

We developed a quantitative method for the determination of methyl esterase activity, analyzing substrate specificity against three major signal molecules, jasmonic acid methyl ester (MeJA), salicylic acid methyl ester (MeSA), and indole-3-acetic acid methyl ester (MeIAA). We used a silylation reagent for chemical derivatization and used gas chromatography (GC)-mass spectroscopy in analyses, for high precision. To test this method, an Arabidopsis esterase gene, AtME8, was expressed in Escherichia coli, and then the kinetic parameters of the recombinant enzyme were determined for three substrates.

View Article and Find Full Text PDF

Background: Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood.

Methodology/principal Findings: We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response.

View Article and Find Full Text PDF

The control of flowering time in Brassica plants is an important approach for improving productivity, as vegetative tissues are not produced after the floral transition in Brassica plants. In order to determine the feasibility of modulating flowering time in Chinese cabbage plants, genes homologous to Arabidopsis SHORT VEGETATIVE PHASE (AtSVP) were isolated from spring-type and fall-type cultivars of Chinese cabbage plants, and their functions were determined. Their deduced amino acid sequences were 91-93% identical with that of AtSVP.

View Article and Find Full Text PDF

We cloned a salicylic acid/benzoic acid carboxyl methyltransferase gene, OsBSMT1, from Oryza sativa. A recombinant OsBSMT1 protein obtained by expressing the gene in Escherichia coli exhibited carboxyl methyltransferase activity in reactions with salicylic acid (SA), benzoic acid (BA), and de-S-methyl benzo(1,2,3)thiadiazole-7-carbothioic acid (dSM-BTH), producing methyl salicylate (MeSA), methyl benzoate (MeBA), and methyl dSM-BTH (MeBTH), respectively. Compared to wild-type plants, transgenic Arabidopsis overexpressing OsBSMT1 accumulated considerably higher levels of MeSA and MeBA, some of which were vaporized into the environment.

View Article and Find Full Text PDF
Article Synopsis
  • - Arabidopsis SHORT VEGETATIVE PHASE (SVP) is crucial for how plants respond to changes in temperature, particularly for their reproduction.
  • - Without SVP, plants become insensitive to temperature changes, indicating its vital role in the thermosensory pathway.
  • - SVP influences flowering time by directly repressing the expression of FLOWERING LOCUS T (FT), a key gene involved in flowering, especially under varying temperature conditions.
View Article and Find Full Text PDF

Jasmonates comprise a family of plant hormones that regulate gene expression to modulate diverse developmental and defensive processes. To screen a set of jasmonate-responsive Arabidopsis genes, we performed a microarray analysis using an Affymetrix GeneChip containing about 8,300 gene probes synthesized in situ. External treatment with 100 microM methyl jasmonate resulted in significant changes (more than twofold increases or decreases) in the expression levels of 137 genes in the rosette leaves of 5-week-old Arabidopsis plants.

View Article and Find Full Text PDF

In order to understand the mechanisms underlying plant development, a necessary first step involves the elucidation of the functions of the genes, via the analysis of mutants that exhibit developmental defects. In this study, an activation tagging mutant library harboring 80,650 independent Arabidopsis transformants was generated in order to screen for developmental mutants. A total of 129 mutants manifesting dominant developmental abnormalities were isolated, and their T-DNA insertion loci were mapped.

View Article and Find Full Text PDF

MADS box genes are known to perform important functions in the development of various plant organs. Although the functions of many MADS box genes have previously been elucidated, the biological function of the type I MADS box genes remains poorly understood. In order to understand the function and regulation of the type I MADS box genes, we conducted molecular genetic analyses of AGL28, a member of the Malpha class of type I genes.

View Article and Find Full Text PDF

CONSTANS (CO) regulates flowering time by positively regulating expression of two floral integrators, FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), in Arabidopsis (Arabidopsis thaliana). FT and SOC1 have been proposed to act in parallel pathways downstream of CO based on genetic analysis using weak ft alleles, since ft soc1 double mutants showed an additive effect in suppressing the early flowering of CO overexpressor plants. However, this genetic analysis was inconsistent with the sequential induction pattern of FT and SOC1 found in inducible CO overexpressor plants.

View Article and Find Full Text PDF

Positive selection of transgenic plants is essential during plant transformation. Thus, strong promoters are often used in selectable marker genes to ensure successful selection. Many plant transformation vectors, including pPZP family vectors, use the 35S promoter as a regulatory sequence for their selectable marker genes.

View Article and Find Full Text PDF