The purpose of this study was to investigate the physicochemical properties and in vitro evaluation of fatty ester prodrugs of salicylic acid for ultraviolet (UV) protection. The physicochemical properties such as lipophilicity, chemical stability and enzymatic hydrolysis were investigated with the following fatty ester prodrugs of salicylic acid: octanoyl (C8SA), nonanoyl (C9SA), decanoyl (C10SA), lauroyl (C12SA), myristoyl (C14SA) and palmitoyl oxysalicylate (C16SA). Furthermore, their skin permeation and accumulation were evaluated using a combination of common permeation enhancing techniques such as the use of a lipophilic receptor solution, removal of stratum corneum and delipidization of skin.
View Article and Find Full Text PDFTo improve its solubility, dissolution, and bioavailability; Ibuprofen-polyethylene glycol 8000 (PEG 8000) solid dispersions (SDs) with different drug loadings were prepared, characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), and evaluated for solubility, in-vitro release, and oral bioavailability of ibuprofen in rats. Loss of individual surface properties during melting and solidification as revealed by SEM micrographs indicated the formation of effective SDs. Absence or shifting towards the lower melting temperature of the drug peak in SDs and physical mixtures in DSC study indicated the possibilities of drug-polymer interactions.
View Article and Find Full Text PDF