T cells have been implicated in the early pathogenesis of ischemia reperfusion injury (IRI) of kidney, liver, lung, and brain. It is not known whether Ag-TCR engagement followed by Ag-specific T cell activation participates in IRI. T cell-deficient nu/nu mice are moderately resistant to renal IRI, which can be reversed upon reconstitution with syngeneic T cells.
View Article and Find Full Text PDFErbB-2 (HER-2/neu) is a transforming oncogene expressed by a substantial fraction of breast cancers, and monoclonal antibody therapy directed toward this antigen is an established treatment modality. However, not all tumors respond, and with a monoclonal antibody directed to a single epitope, there is always the risk of tumor escape. Furthermore, passive antibody therapy requires continual treatment.
View Article and Find Full Text PDFIntroduction: We and others previously observed immunosurveillance against transplantable tumors in mice, and enhancement thereof by blockade of negative regulation by T reg cells or the NKT-IL-13-myeloid cell-TGF-beta regulatory circuit. However, it was unknown whether natural immunosurveillance inhibits growth of completely spontaneous autochthonous tumors, and whether it can be improved by inhibition of negative regulation.
Materials And Methods: To examine the existence of T cell-mediated immunosurveillance against spontaneous tumors, BALB-neuT mice were treated with anti-CD4 and/or anti-CD8.
HER-2 is an oncogenic tumor-associated Ag that is overexpressed in several human tumors including breast and ovarian cancer. The efficacy and mechanism of a HER-2-expressing recombinant adenoviral vaccine to protect against tumorigenesis was examined using HER-2 transgenic (BALB-neuT) mice, which develop spontaneous breast tumors in all 10 mammary glands, and also using a transplantable mouse tumor model. Vaccination beginning at 6-8 wk of age (through 19 wk of age) prevented development of spontaneous mammary tumors even after 50 wk, whereas the animals in the control groups had tumors in all mammary glands by 25 wk.
View Article and Find Full Text PDFWe have previously observed a novel role of natural killer T (NKT) cells in negative regulation of antitumor immune responses against an immunogenic regressor tumor expressing a transfected viral antigen. Here, we investigated whether hidden spontaneous antitumor immunosurveillance, in the absence of a vaccine, could be revealed by disruption of this negative regulatory pathway involving CD4+ NKT cells and interleukin-13 (IL-13), in a murine pulmonary metastasis model of a nontransfected, nonregressor, syngeneic tumor, the CT26 colon carcinoma. Lung metastases of CT26 were decreased in CD4+ T cell-depleted BALB/c mice, suggesting that CD4+ T cells were involved in negative regulation of antitumor responses.
View Article and Find Full Text PDFDendritic cells (DCs) are powerful antigen-presenting cells that process antigens and present peptide epitopes in the context of the major histocompatibility complex molecules to generate immune responses. DCs are being studied as potential anticancer vaccines because of their ability to present antigens to naive T cells and to stimulate the expansion of antigen-specific T-cell populations. We investigated an antitumor vaccination using DCs modified by transfer of a nonsignaling neu oncogene, a homologue of human HER-2/neu, in a transgenic model of breast cancer.
View Article and Find Full Text PDFOur previous work demonstrated that cytotoxic T lymphocyte (CTL)-mediated tumor immunosurveillance of the 15-12RM tumor could be suppressed by a CD1d-restricted lymphocyte, most likely a natural killer (NK) T cell, which produces interleukin (IL)-13. Here we present evidence for the effector elements in this suppressive pathway. T cell-reconstituted recombination activating gene (RAG)2 knockout (KO) and RAG2/IL-4 receptor alpha double KO mice showed that inhibition of immunosurveillance requires IL-13 responsiveness by a non-T non-B cell.
View Article and Find Full Text PDFCancer Immunol Immunother
February 2004
Major mediators of anti-tumor immunity are CD4(+) T(h)1 cells and CD8(+) cytotoxic T lymphocytes (CTLs). In tumor-bearing animals, the T(h)1- and CTL-mediated anti-tumor immunity is down-regulated in multiple ways. Better understanding of negative regulatory pathways of tumor immunity is crucial for the development of anti-tumor vaccines and immunotherapies.
View Article and Find Full Text PDFMice deficient for the STAT6 gene (STAT6(-/-) mice) have enhanced immunosurveillance against primary and metastatic tumors. Because STAT6 is a downstream effector of the IL-4R, and IL-13 binds to the type 2 IL-4R, IL-13 has been proposed as an inhibitor that blocks differentiation of tumor-specific CD8(+) T cells. Immunity in STAT6(-/-) mice is unusually effective in that 45-80% of STAT6(-/-) mice with established, spontaneous metastatic 4T1 mammary carcinoma, whose primary tumors are surgically excised, survive indefinitely, as compared with <10% of STAT(+/+) (BALB/c) mice.
View Article and Find Full Text PDF