Publications by authors named "Jong Jin Choi"

The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering.

View Article and Find Full Text PDF
Article Synopsis
  • A new method using molten salt synthesis was developed to create transparent, uniform microcuboids of Li, Ba-doped (K, Na)NbO (KNN) crystals, about 80 μm in size.
  • The microcuboids exhibited relaxor ferroelectric (RFE) properties due to unique growth mechanisms and dislocation-induced nanodomain formation, differing from typical ferroelectric (FE) properties of KNN ceramics.
  • These KNN microcuboids demonstrated superior piezoelectric performance and potential applications in flexible pressure sensors, allowing them to detect human motion without needing external power.
View Article and Find Full Text PDF

Sodium metal chloride batteries have become a substantial focus area in the research on prospective alternatives for battery energy storage systems (BESSs) since they are more stable than lithium ion batteries. This study demonstrates the effects of the cathode microstructure on the electrochemical properties of sodium metal chloride cells. The cathode powder is manufactured in the form of granules composed of a metal active material and NaCl, and the ionic conductivity is attained by filling the interiors of the granules with a second electrolyte (NaAlCl).

View Article and Find Full Text PDF

The skin protects the body from external barriers. Certain limitations exist in the development of technologies to rapidly prepare skin substitutes that are therapeutically effective in surgeries involving extensive burns and skin transplantation. Herein, we fabricated a structure similar to the skin layer by using skin-derived decellularized extracellular matrix (dECM) with bioink, keratinocytes, and fibroblasts using 3D-printing technology.

View Article and Find Full Text PDF

Various supraparticles have been extensively studied owing to their excellent catalytic properties that are attributed to their inherent porous structure; however, their mechanical properties have not garnered attention owing to their less dense structure. We demonstrate a rational approach for fabricating assembled supraparticles and, subsequently, highly dense microspheres. In addition, 3 mol % yttria-stabilized zirconia (3YSZ) and alumina particles were selected as building blocks and assembled into higher-order architectures using a droplet-based template method (spray drying) for validation with proof-of-concept.

View Article and Find Full Text PDF

In this study, composite devices were fabricated using ferromagnetic FeSiB-based alloys (Metglas) and ferroelectric ceramics, and their magnetic field sensitivity was evaluated. Sintered 0.95Pb(ZrTi)O-0.

View Article and Find Full Text PDF

Recent work has suggested a microbial dysbiosis association between the lung and gut in respiratory diseases. Here, we demonstrated that gut microbiome modulation attenuated emphysema development. To modulate the gut microbiome, fecal microbiota transplantation (FMT) and diet modification were adopted in mice exposed to smoking and poly I:C for the emphysema model.

View Article and Find Full Text PDF

As one of the perovskite families, potassium sodium niobates (KNa)NbO (KNN) have been gaining tremendous attention due to their various functional properties which can be largely determined by their crystallographic phase and composition. However, a selective evolution of different phases for KNN with controlled composition can be difficult to achieve, especially in solution chemical synthesis because of its strong tendency to stabilize into orthorhombic phase at conventional synthetic temperature. We herein developed a facile solution approach to control the phase and composition of dopant-free KNN particles selectively through the modification of reaction parameters.

View Article and Find Full Text PDF

3D culture of stem cells can improve therapeutic effects. However, there is limited research on how to deliver cultured stem cell spheroids to the desired target. Here, we developed lotus seedpod-inspired hydrogel (LoSH) containing microwells for culture and delivery of stem cell spheroids.

View Article and Find Full Text PDF

Critical limb ischemia is one of the most common types of peripheral arterial disease. Preclinical development of ischemia therapeutics relies on the availability of a relevant and reproducible in vivo disease model. Thus, establishing appropriate animal disease models is essential for the development of new therapeutic strategies.

View Article and Find Full Text PDF

Since both myocardium and vasculature in the heart are excessively damaged following myocardial infarction (MI), therapeutic strategies for treating MI hearts should concurrently target both so as to achieve true cardiac repair. Here we demonstrate a concomitant method that exploits the advantages of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) and human mesenchymal stem cell-loaded patch (hMSC-PA) to amplify cardiac repair in a rat MI model. Epicardially implanted hMSC-PA provide a complimentary microenvironment which enhances vascular regeneration through prolonged secretion of paracrine factors, but more importantly it significantly improves the retention and engraftment of intramyocardially injected hiPSC-CMs which ultimately restore the cardiac function.

View Article and Find Full Text PDF

Designing a piezoelectric energy harvester (PEH) with high power density and high fatigue resistance is essential for the successful replacement of the currently using batteries in structural health monitoring (SHM) systems. Among the various designs, the PEH comprising of a cantilever structure as a passive layer and piezoelectric single crystal-based fiber composites (SFC) as an active layer showed excellent performance due to its high electromechanical properties and dynamic flexibilities that are suitable for low frequency vibrations. In the present study, an effort was made to investigate the reliable performance of hard and soft SFC based PEHs.

View Article and Find Full Text PDF

Proliferative and migratory abilities of fibroblasts are essential for wound healing at the skin surface. Cytoplasmic linker-associated protein-2 (CLASP2) was originally found to interact with cytoplasmic linker protein (CLIP)-170. CLASP2 plays an important role in microtubule stabilization and the microtubule-stabilizing activity of CLASP2 depends on its interactions with end binding (EB)-1 and CLIP-170.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the potential of human embryonic stem cells (hESCs) derived from somatic cell nuclear transfer (SCNT) to be used for therapeutic cloning, focusing on CHA-NT4 cells.
  • The research involved differentiating CHA-NT4 cells into endothelial cells using a specialized microwell system, and the results showed characteristics like proper morphology and functionality similar to established hESC-derived cells.
  • The successful transplantation of these derived endothelial cells in mice with hind limb ischemia demonstrated their ability to restore blood flow, highlighting the need for further exploration of CHA-NT4 cells compared to other stem cell lines.
View Article and Find Full Text PDF

Much of our understanding of human biology and the function of mammalian cells in tissue regeneration have been derived from mechanistically and genetically manipulated rodent models. However, current models examining epidermal wound repair fail to address both the cross-species mechanistic and immunogenic differences simultaneously. Herein, we describe a multifaceted approach intended to better recapitulate human skin recovery in rodent models.

View Article and Find Full Text PDF

We report the effect of epoxy adhesion layers with different mechanical or physical property on a magnetoelectric (ME) composite laminate composed of FeBSi alloy (Metglas)/single-crystal Pb(MgNb)O-Pb(Zr,Ti)O/Metglas to achieve an improved ME conversion performance. Through theoretical simulation, it was revealed that the Young's modulus and the thickness of interfacial adhesives were major parameters that influence the conversion efficiency in ME composites. In the experimental evaluation, we utilized three epoxy materials with a distinct Young's modulus and adjusted the average thickness of the adhesion layers to optimize the ME conversion.

View Article and Find Full Text PDF

As part of the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here, we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation.

View Article and Find Full Text PDF

Recent technological advances in developing a diverse range of lasers have opened new avenues in material processing. Laser processing of materials involves their exposure to rapid and localized energy, which creates conditions of electronic and thermodynamic nonequilibrium. The laser-induced heat can be localized in space and time, enabling excellent control over the manipulation of materials.

View Article and Find Full Text PDF

A ceramic substrate must not only have an excellent thermal performance but also be thin, since the electronic devices have to become thin and small in the electronics industry of the next generation. In this manuscript, a thin ceramic substrate (thickness: 30-70 µm) is reported for the next generation ceramic substrate. It is fabricated by a new process [granule spray in vacuum (GSV)] which is a room temperature process.

View Article and Find Full Text PDF

Basic fibroblast growth factor (bFGF) supplementation is critical to maintain the pluripotency of human pluripotent stem cells (hPSCs) through activation of PI3K/AKT, rather than MEK/ERK pathway. Thus, elaborate molecular mechanisms that preserve PI3K/AKT signaling upon bFGF stimulation may exist in hPSCs. Protein arginine methyltransferase 8 (PRMT8) was expressed and then its level gradually decreased during spontaneous differentiation of human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

A record-high, near-theoretical intrinsic magnetoelectric (ME) coupling of 7 V cm Oe is achieved in a heterostructure of piezoelectric Pb(Zr,Ti)O (PZT) film deposited on magnetostrictive Metglas (FeBSi). The anchor-like, nanostructured interface between PZT and Metglas, improved crystallinity of PZT by laser annealing, and optimum volume of crystalline PZT are found to be the key factors in realizing such a giant strain-mediated ME coupling.

View Article and Find Full Text PDF

Hemangioblasts or blood islands only arise in early development thereby the sources to obtain these bi-potential cells are limited. While previous studies have isolated both lineages through the hemangioblast, derivation efficiency was rather low due to cellular damage attributed by enzyme usage and fluorescent activated cell sorting (FACS). This study focused on avoiding the use of damaging factors in the derivation of endothelial cells (ECs).

View Article and Find Full Text PDF

Many researchers have focused on the role of adipocytes in increasing efficient bone tissue engineering and osteogenic differentiation of stem cells. Previous reports have not reached a definite consensus on whether adipocytes positively influence osteogenic differentiation and bone formation. We investigated the adipocyte influence on osteogenic differentiation from adipose-derived stromal cells (ADSCs) and bone formation through histological analysis and .

View Article and Find Full Text PDF

As wound contraction in the cutaneous layer occurs rapidly in mice, mechanical means are typically used to deliberately expose the wound to properly investigate healing by secondary intention. Previously, silicon rings and splinting models were attempted to analyze histological recovery but prevention of surrounding epidermal cell migration and subsequent closure was minimal. Here, we developed an ideal chimney wound model to evaluate epidermal regeneration in murine under hESC-EC transplantation through histological analysis encompassing the three phases of regeneration: migration, proliferation, and remodeling.

View Article and Find Full Text PDF

In this manuscript, an interesting phenomenon is reported. That is the self-growth of single crystals in Pb-free piezoelectric ceramics. These crystals are several centimeters in size.

View Article and Find Full Text PDF