FAM19A5, a novel secretory protein highly expressed in the brain, is potentially associated with the progression of Alzheimer's disease (AD). However, its role in the AD pathogenesis remains unclear. Here, we investigated the potential function of FAM19A5 in the context of AD.
View Article and Find Full Text PDFThis study investigated the anti-inflammatory and protective properties of SP-8356, a synthetic derivative of (1S)-(-)-verbenone, in a mouse model of LPS-induced acute lung injury (ALI). By targeting intracellular signaling pathways and inflammatory responses, SP-8356 demonstrated a potent ability to attenuate deleterious effects of proinflammatory stimuli. Specifically, SP-8356 effectively inhibited the activation of crucial signaling molecules such as NF-κB and Akt, and subsequently dampened the expression of inflammatory cytokines in various lung cellular components.
View Article and Find Full Text PDFBackground: Tachykinins and their cognate receptors, neurokinin receptors (NKs) including NK1, NK2, and NK3 play vital roles in regulating various physiological processes including neurotransmission, nociception, inflammation, smooth muscle contractility, and stimulation of endocrine and exocrine gland secretion. Their abnormal expression has been reported to be associated with neurological disorders, inflammation, and cancer. Even though NKs are expressed in the same cells with their expression being inversely correlated in some conditions, there is no direct evidence to prove their interaction.
View Article and Find Full Text PDFLysophosphatidic acid receptor 1 (LPAR1) is an emerging therapeutic target for numerous human diseases including fibrosis. However, the limited number of available core structures of LPAR1 antagonists has prompted the need for novel chemical templates. In this study, we conducted a high-throughput virtual screening to discover potential new scaffolds.
View Article and Find Full Text PDFOxidative stress due to abnormal accumulation of reactive oxygen species (ROS) is an initiator of a large number of human diseases, and thus, the elimination and prevention of excessive ROS are important aspects of preventing the development of such diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is an essential transcription factor that defends against oxidative stress, and its function is negatively controlled by Kelch-like ECH-associated protein 1 (KEAP1). Therefore, activating NRF2 by inhibiting KEAP1 is viewed as a strategy for combating oxidative stress-related diseases.
View Article and Find Full Text PDFC-X-C motif chemokine ligand 12(CXCL12) is an essential chemokine for organ development and homeostasis in multiple tissues. Its receptor, C-X-C chemokine receptor type 4(CXCR4), is expressed on the surface of target cells. The chemokine and receptor are expressed almost ubiquitously in human tissues and cells throughout life, and abnormal expression of CXCL12 and CXCR4 is observed in pathological conditions, such as inflammation and cancer.
View Article and Find Full Text PDFCXCR3 regulates leukocyte trafficking, maturation, and various pathophysiological conditions. Alternative splicing generates three CXCR3 isoforms in humans. Previous studies investigated the roles of CXCR3 isoforms, and some biochemical data are not correlated with biological relevance analyses.
View Article and Find Full Text PDFNerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1.
View Article and Find Full Text PDFBackground: C-C motif chemokine receptor 2 (CCR2), the main receptor for monocyte chemoattractant protein-1 (MCP-1), is expressed on immune cells, including monocytes, macrophages, and activated T cells, and mediates cell migration toward MCP-1 in inflammation-related diseases. The CCR2 gene encodes two isoforms: CCR2A and CCR2B. The CCR2B open reading frame is localized in a single exon, similar to other chemokine receptors, and CCR2A and CCR2B feature different amino acid sequences in their C-terminal intracellular loops due to alternative splicing.
View Article and Find Full Text PDFObjective: Obesity-induced inflamed visceral adipose tissue (VAT) secretes pro-inflammatory cytokines thereby promoting systemic inflammation and insulin resistance which further exacerbate obesity-associated nonalcoholic fatty liver disease (NAFLD). Transforming growth factor (TGF)-β /Smad3 signaling plays a crucial role in the inflammatory events within the VAT. Here, we investigate whether SP-1154, a novel synthetic verbenone derivative, can inhibit TGF-β/Smad3 signaling thereby exhibiting a therapeutic effect against obesity-induced inflamed VAT and subsequent NAFLD in high-fat diet-induced mice.
View Article and Find Full Text PDFNeurogenesis and functional brain activity require complex associations of inherently programmed secretory elements that are regulated precisely and temporally. Family with sequence similarity 19 A1 (FAM19A1) is a secreted protein primarily expressed in subsets of terminally differentiated neuronal precursor cells and fully mature neurons in specific brain substructures. Several recent studies have demonstrated the importance of FAM19A1 in brain physiology; however, additional information is needed to support its role in neuronal maturation and function.
View Article and Find Full Text PDFLiver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity.
View Article and Find Full Text PDFBackground: Some chemokine receptors referred to as atypical chemokine receptors (ACKRs) are thought to non-signaling decoys because of their inability to activate typical G-protein signaling pathways. CXCR7, also known as ACKR3, binds to only two chemokines, SDF-1α and I-TAC, and recruits β-arrestins. SDF-1α also binds to its own conventional receptor, CXCR4, involving in homeostatic modulation such as development and immune surveillance as well as pathological conditions such as inflammation, ischemia, and cancers.
View Article and Find Full Text PDFCytosolic Ca levels ([Ca]) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca] concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca] is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca] in single cells and animal models.
View Article and Find Full Text PDFWe investigated the effect of chitinase-3-like protein 1 (CHI3L1) on glucose metabolism and its underlying mechanisms in skeletal muscle cells, and evaluated whether the observed effects are relevant in humans. CHI3L1 was associated with increased glucose uptake in skeletal muscles in an AMP-activated protein kinase (AMPK)-dependent manner, and with increased intracellular calcium levels via PAR2. The improvement in glucose metabolism observed in an intraperitoneal glucose tolerance test on male C57BL/6J mice supported this association.
View Article and Find Full Text PDFThe accelerated course of hepatic fibrosis that occurs in some patients after liver transplantation is an important clinical problem. Activation of hepatic stellate cell (HSCs) is the dominant event in hepatic fibrosis. Previous studies have shown that treatment with mammalian target of rapamycin (mTOR) inhibitors was more effective in reducing the progression of fibrosis than treatment with calcineurin inhibitors, suggesting that mTOR could be a crucial target for inhibition of fibrosis.
View Article and Find Full Text PDFGalanin receptors (GALRs) belong to the superfamily of G-protein coupled receptors. The three GALR subtypes (GALR1, GALR2, and GALR3) are activated by their endogenous ligands: spexin (SPX) and galanin (GAL). The synthetic SPX-based GALR2-specific agonist, SG2A, plays a dual role in the regulation of appetite and depression-like behaviors.
View Article and Find Full Text PDFNeurodevelopment and mature brain function are spatiotemporally regulated by various cytokines and chemokines. The chemokine-like neuropeptide FAM19A1 is a member of family with sequence similarity 19 (FAM19), which is predominantly expressed in the brain. Its highly conserved amino acid sequence among vertebrates suggests that FAM19A1 may play important physiological roles in neurodevelopment and brain function.
View Article and Find Full Text PDFFAM19A5 is a secretory protein that is predominantly expressed in the brain. Although the gene has been found to be associated with neurological and/or psychiatric diseases, only limited information is available on its function in the brain. Using knock-in mice, we determined the expression pattern of FAM19A5 in developing and adult brains and identified cell types that express FAM19A5 in naïve and traumatic brain injury (TBI)-induced brains.
View Article and Find Full Text PDFBackground: Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9 (MMP-9) by dimerization, may play important roles in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we investigated whether a novel CD147 inhibitor SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.
View Article and Find Full Text PDFInteractions between G-protein coupled receptors (GPCRs) and β-arrestins are vital processes with physiological implications of great importance. Currently, the characterization of novel drugs towards their interactions with β-arrestins and other cytosolic proteins is extremely valuable in the field of GPCR drug discovery particularly during the study of GPCR biased agonism. Here, we show the application of a novel structural complementation assay to accurately monitor receptor-β-arrestin interactions in real time living systems.
View Article and Find Full Text PDFDespite the established comorbidity between mood disorders and abnormal eating behaviors, the underlying molecular mechanism and therapeutics remain to be resolved. Here, we show that a spexin-based galanin receptor type 2 agonist (SG2A) simultaneously normalized mood behaviors and body weight in corticosterone pellet-implanted (CORTI) mice, which are underweight and exhibit signs of anhedonia, increased anxiety, and depression. Administration of SG2A into the lateral ventricle produced antidepressive and anxiolytic effects in CORTI mice.
View Article and Find Full Text PDF