We demonstrate the algebraic cancellation of residual phase cross talk in digitally enhanced heterodyne interferometry (DEHeI), a code division multiplexing technique for interferometric sensing. By using linear combinations of parallel decoding operations at multiple delays, we synthesize a zero correlation for spurious signals and remove phase cross talk: a method we call offset decoding. We experimentally demonstrate 70 dB of signal isolation and over 40 dB greater isolation than the equivalent standard implementation of DEHeI.
View Article and Find Full Text PDFWe present a theoretical overview and experimental demonstration of a continuous-wave, cavity-enhanced optical absorption spectrometry method to detect molecular gas. This technique utilizes the two non-degenerate polarization modes of a birefringent cavity to obtain a zero background readout of the intra-cavity absorption. We use a double-pass equilateral triangle optical cavity design with additional feed-forward frequency noise correction to measure the R14e absorption line in the 30012←00001 band of CO at 1572.
View Article and Find Full Text PDFWe demonstrate a passive, all-optical fiber frequency reference using a digitally enhanced homodyne interferometric phase readout. We model the noise contributions from fiber thermal noise and the coupling of double Rayleigh scattering in a digitally enhanced homodyne interferometer. A system frequency stability of 0.
View Article and Find Full Text PDFA frequency and intensity noise immune fiber dispersion spectrometer with a digitally enhanced homodyne phase extraction system is presented. A hydrogen cyanide () vapor cell is placed in a digitally enhanced Sagnac interferometer, and the anomalous dispersion at the 1550.515 nm P11 transition is interrogated with a tunable laser.
View Article and Find Full Text PDFWe report the infrasonic performance of a fiber optic laser frequency reference with potential application to space-based gravitational wave detectors, such as the Laser Interferometer Space Antenna. We determine the optimum cross-over frequency between an optical frequency comb stabilized to a Rubidium atomic reference and two passive, all-fiber interferometers interrogated using digitally enhanced homodyne interferometery. By measuring the relative stability between the three independent optical frequency references, we find the optimum cross-over frequency to occur at 1.
View Article and Find Full Text PDFWe present a free-space, continuous-wave laser interferometric system capable of multi-target dynamic phase measurement at acoustic frequencies up to a Nyquist bandwidth of 10.2 kHz. The system uses Digitally-enhanced Heterodyne Interferometry to range gate acoustic signals simultaneously from multiple in-line reflections while isolating coherent cross-talk between them.
View Article and Find Full Text PDFWe propose a new method to extend the path length tunability of rotary delay-lines. This method was shown to achieve a duty cycle of >80% and repetition rates of over 40 kHz. The new method relies on a new multi-segmented micro-machined mirror and serial injection of a single reflection onto separate segments of this mirror.
View Article and Find Full Text PDFWe present an all-fiber design for a microphone using a fiber Bragg grating Fabry-Perot resonator attached to a diaphragm transducer. We analytically model and verify the fiber-diaphragm mechanical interaction, using the Hänsch-Couillaud readout technique to provide necessary sensitivity. We achieved a noise-equivalent strain sensitivity of 7.
View Article and Find Full Text PDFThis experiment uses digital interferometry to reduce polarisation noise from a fiber interferometer to the level of double Rayleigh backscatter making precision fiber metrology systems robust for remote field applications. This is achieved with a measurement of the Jones matrix with interferometric sensitivity in real time, limited only by fibre length and processing bandwidth. This new approach leads to potentially new metrology applications and the ability to do ellipsometry without polarisation elements in the output field.
View Article and Find Full Text PDFWe configure an all-fiber digital interferometer to eliminate both code noise and Rayleigh backscatter noise from bidirectional measurements. We utilize a sawtooth phase ramp to upconvert code noise beyond our signal bandwidth, demonstrating an in-band noise reduction of approximately two orders of magnitude. In addition, we demonstrate, for the first time to our knowledge, the use of relative code delays within a digital-interferometer system to eliminate Rayleigh-backscatter noise, resulting in a noise reduction of a factor of 50.
View Article and Find Full Text PDFWe present the characterization of the recently developed cavity enhanced amplitude modulation laser absorption spectroscopy (CEAMLAS) technique to measure dissipation within the evanescent field of a whispering-gallery mode resonator, and demonstrate the parallel use of CEAMLAS and the Pound-Drever-Hall measurement techniques to provide both dissipation and dispersive real-time microresonator measurements. Using an atomic force microscope tip, we introduce a controlled perturbation to the evanescent field of the resonator. In this case, dissipative sensing allows up to 16.
View Article and Find Full Text PDFWe demonstrate for the first time the use of digital range-gating in OFDR to allow for orders of magnitude reduction in the required sampling rates. This allows for sensing over long lengths of fiber with fast sweeps of the optical source frequency, without requiring impractical sampling rates. The range-gating is achieved using digitally enhanced interferometry (DI), which isolates individual sections of OFDR signal bandwidth.
View Article and Find Full Text PDFWe present a laser amplitude modulation technique to actively stabilize the critical coupling of a microresonator by controlling the evanescent coupling gap from an optical fiber taper. It is a form of nulled lock-in detection, which decouples laser intensity fluctuations from the critical coupling measurement. We achieved a stabilization bandwidth of ∼ 20 Hz, with up to 5 orders of magnitude displacement noise suppression at 10 mHz, and an inferred gap stability of better than a picometer/√Hz.
View Article and Find Full Text PDFLaser frequency fluctuations typically limit the performance of high-resolution interferometric fiber strain sensors. Using time delay interferometry, we demonstrate a frequency noise immune fiber sensing system, where strain signals were extracted well below the noise floor normally imposed by the frequency fluctuations of the laser. Initial measurements show a reduction in the noise floor by a factor of 30, with strain sensitivities of a nanostrain/Hz at 100 mHz and reaching 100 ps/Hz at 1 Hz.
View Article and Find Full Text PDFDigitally enhanced interferometry (DI) can be used to distinguish between interferometric signals and simultaneously monitor in-line object displacements with subnanometer sensitivity. In contrast to conventional interferometry-where these signals interfere with each other and degrade performance-we experimentally show that by using DI, each of these signals can be isolated and measured at the same time. We present what we believe to be the first demonstration of DI's signal multiplexing capabilities, showing simultaneous length sensing of three sections of an optical fiber.
View Article and Find Full Text PDFWe present a quasi-static fiber optic strain sensing system capable of resolving signals below nanostrain from 20 mHz. A telecom-grade distributed feedback CW diode laser is locked to a fiber Fabry-Perot sensor, transferring the detected signals onto the laser. An H(13)C(14)N absorption line is then used as a frequency reference to extract accurate low-frequency strain signals from the locked system.
View Article and Find Full Text PDFWe describe and verify the dynamic behavior of a novel technique to optimize and actively control the optical impedance matching condition of a coupled resonator system. The technique employs radio frequency modulation and demodulation to interrogate the reflection amplitude response of the coupled cavity system. The sign and magnitude of the demodulated signal is used in a closed loop feedback system which controls the coupling condition of a three-mirror resonator.
View Article and Find Full Text PDFAn overview on high-resolution and fast interrogation of optical-fiber sensors relying on laser reflection spectroscopy is given. Fiber Bragg-gratings (FBGs) and FBG resonators built in fibers of different types are used for strain, temperature and acceleration measurements using heterodyne-detection and optical frequency-locking techniques. Silica fiber-ring cavities are used for chemical sensing based on evanescent-wave spectroscopy.
View Article and Find Full Text PDFAn integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pepsilon) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than -75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise.
View Article and Find Full Text PDFWe introduce a closed-loop feedback technique to actively control the coupling condition of an optical cavity, by employing amplitude modulation of the interrogating laser. We show that active impedance matching of the cavity facilitates optimal shot-noise sensing performance in a cavity enhanced system, while its control error signal can be used for intra-cavity absorption or loss signal extraction. We present the first demonstration of this technique with a fiber ring cavity, and achieved shot-noise limited loss sensitivity.
View Article and Find Full Text PDFWe propose a new all fiber Mach-Zehnder-Sagnac hybrid interferometer topology for precision sensing. This configuration utilizes a high coherence laser source, mitigates the effects of Rayleigh backscatter and polarization wander, while eliminating scale factor drift. We also present preliminary experimental results, using telecommunications grade single mode fiber and fiber couplers, to demonstrate its principle of operation.
View Article and Find Full Text PDFWhen a fiber Fabry-Perot is used in an ultra-sensitive strain detection system via a radio-frequency interrogation scheme, its frequency discrimination properties can be enhanced by reducing the linewidth of its resonance. This increases the signal-to-noise ratio, and thus suppresses the strain equivalent noise floor. We demonstrate this improvement in a long-distance high performance remote sensing system and show that in reflection, it can mitigate the effects of random phase noise introduced by Rayleigh back-scattering.
View Article and Find Full Text PDFWe demonstrate a fiber Fabry-Perot (FFP) sensor that is capable of detecting subpicostrain signals, from 100 Hz and extending beyond 100 kHz, using the Pound-Drever-Hall (PDH) frequency locking technique. A low-power diode laser at 1550 nm is locked to a free-space reference cavity to suppress its free-running frequency noise, thereby stabilizing the laser. The stabilized laser is then used to interrogate a FFP sensor whose PDH error signal yields the instantaneous fiber strain.
View Article and Find Full Text PDFPhotothermal effects in passive Fabry-Perot resonators are caused by the conversion of circulating optical energy into heat as a result of absorption. This results in thermal change in the resonator's optical path length, the round-trip phase, and hence the resonance condition. We describe a simplified dynamic numerical model for photothermal effects in passive fiber Bragg grating resonators and present results of their experimental observation.
View Article and Find Full Text PDFAn experimental technique to observe and accurately measure the Gouy phase evolution of Hermite-Gaussian modes is presented. Because of the unique features of spatial mode interference frequency-locking error signals, we are able to readily perform explicit measurement of the Gouy phase in a simple and highly accurate manner. We present these data and discuss the technique and its implications.
View Article and Find Full Text PDF