Publications by authors named "Jonathon S Barton"

We demonstrate an array of erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss Si(3)N(4) platform. Sidewall gratings providing the lasing feedback are defined in the silicon-nitride layer using 248 nm stepper lithography, while the gain is provided by a reactive co-sputtered erbium-doped aluminum-oxide layer. We observe lasing output over a 12 nm wavelength range (1531-1543 nm) from the array of five separate lasers.

View Article and Find Full Text PDF

We demonstrate sidewall gratings in an ultra-low-loss Si3N4 planar waveguide platform. Through proper geometrical design we can achieve coupling constant values between 13 and 310 cm(-1). The TE waveguide propagation loss over the range of 1540 to 1570 nm is below 5.

View Article and Find Full Text PDF

We demonstrate a wafer-bonded silica-on-silicon planar waveguide platform with record low total propagation loss of (0.045 ± 0.04) dB/m near the free space wavelength of 1580 nm.

View Article and Find Full Text PDF

We characterize an approach to make ultra-low-loss waveguides using stable and reproducible stoichiometric Si3N4 deposited with low-pressure chemical vapor deposition. Using a high-aspect-ratio core geometry, record low losses of 8-9 dB/m for a 0.5 mm bend radius down to 3 dB/m for a 2 mm bend radius are measured with ring resonator and optical frequency domain reflectometry techniques.

View Article and Find Full Text PDF

Detailed wavelength conversion, extinction ratio regeneration, and signal re-amplification experiments are performed using a monolithically integrated, widely tunable photocurrent driven wavelength converter. A -3.5 dB power penalty is observed in bit error rate measurements at 2.

View Article and Find Full Text PDF