Liquid metals, including eutectic gallium-indium (EGaIn), have been explored for various planar droplet operations, including droplet splitting and merging, promoting their use in emerging areas such as flexible electronics and soft robotics. However, three-dimensional (3D) droplet operations, including droplet bouncing, have mostly been limited to nonmetallic liquids or aqueous solutions. This is the first study of liquid metal droplet bouncing using continuous AC electrowetting through an analytical model, computational fluid dynamics simulation, and empirical validation to the best of our knowledge.
View Article and Find Full Text PDF