Previously, our laboratory established the role of small, noncoding RNA species, microRNA (miRNA) including miR-135a in anti-chlamydial immunity in infected hosts. We report here chlamydial infection results in decreased miR-135a expression in mouse genital tissue and a fibroblast cell line. Several chemokine and chemokine receptor genes (including CXCL10, CCR5) associated with chlamydial pathogenesis were identified to contain putative miR-135a binding sequence(s) in the 3' untranslated region.
View Article and Find Full Text PDFOur laboratory has investigated the role of an evolutionarily conserved RNA species called microRNAs (miRs) in regulation of anti-chlamydial protective immunity. MiRs including miR-155 expressed in specific immune effector cells are critical for antigen specific protective immunity and IFN-γ production. Using miR-155 deficient mice, and a murine pulmonary model for chlamydial infection, we report here 1) the effect of host miR-155 on bacterial burden, and 2) identify probable immune genes regulated by miR-155.
View Article and Find Full Text PDFAlthough manual enumeration of inclusion forming units is the most widely accepted means of quantification in the field, it is both time consuming and subject to inherent investigator bias. We report here a rapid, ., minutes .
View Article and Find Full Text PDFEvidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity.
View Article and Find Full Text PDFAnti-chlamydial immunity involves efficient presentation of antigens (Ag) to effector cells resulting in Ag-specific immune responses. There is limited information on inherent underlying mechanisms regulating these events. Previous studies from our laboratory have established that select microRNAs (miRs) function as molecular regulators of immunity in Chlamydia muridarum (Cm) genital infection.
View Article and Find Full Text PDFWe previously associated a missense mutation of the tc0668 gene of serial in vitro-passaged Chlamydia muridarum, a murine model of human urogenital C. trachomatis, with severely attenuated disease development in the upper genital tract of female mice. Since these mutants also contained a TC0237 Q117E missense mutation that enhances their in vitro infectivity, an effort was made here to isolate and characterize a tc0668 single mutant to determine its individual contribution to urogenital pathogenicity.
View Article and Find Full Text PDF