Publications by authors named "Jonathon Gillen"

A degenerate Fermi gas is rapidly quenched into the regime of strong effective repulsion near a Feshbach resonance. The spin fluctuations are monitored using speckle imaging and, contrary to several theoretical predictions, the samples remain in the paramagnetic phase for an arbitrarily large scattering length. Over a wide range of interaction strengths a rapid decay into bound pairs is observed over times on the order of 10ℏ/E(F), preventing the study of equilibrium phases of strongly repulsive fermions.

View Article and Find Full Text PDF

Spin fluctuations and density fluctuations are studied for a two-component gas of strongly interacting fermions along the Bose-Einstein condensate-BCS crossover. This is done by in situ imaging of dispersive speckle patterns. Compressibility and magnetic susceptibility are determined from the measured fluctuations.

View Article and Find Full Text PDF

We propose a method to simultaneously measure the center frequency of a spectral feature and the frequency linewidth of the feature. The method relies on dual frequency modulation of a carrier frequency, which probes the spectral feature, and phase sensitive detection of the transmitted signal at the two modulation frequencies. The detected signals provide two servo-stabilization signals for frequency control of the carrier frequency to the resonance line center and one of the modulation frequencies to the resonance linewidth.

View Article and Find Full Text PDF

Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models.

View Article and Find Full Text PDF

In a climate of increased funding for vaccines, chemotherapy, and prevention of vector-borne diseases, fewer resources have been directed toward improving disease and vector surveillance. Recently developed light-emitting diode (LED) technology was applied to standard insect-vector traps to produce a more effective lighting system. This approach improved phlebotomine sand fly capture rates by 50%, and simultaneously reduced the energy consumption by 50-60%.

View Article and Find Full Text PDF