Publications by authors named "Jonathon Chambers"

This article investigates the finite-time control problem of the switched affine systems via an event-triggered strategy. It is well known that the existence of affine terms brings great difficulties in analysis of the finite-time property of such systems. Furthermore, the design of the globally feasible event-triggered mechanism (ETM) under a finite-time control framework is challenging.

View Article and Find Full Text PDF

An accurate tumour segmentation in brain images is a complicated task due to the complext structure and irregular shape of the tumour. In this letter, our contribution is twofold: (1) a lightweight brain tumour segmentation network (LBTS-Net) is proposed for a fast yet accurate brain tumour segmentation; (2) transfer learning is integrated within the LBTS-Net to fine-tune the network and achieve a robust tumour segmentation. To the best of knowledge, this work is amongst the first in the literature which proposes a lightweight and tailored convolution neural network for brain tumour segmentation.

View Article and Find Full Text PDF

Physiological hand tremor causes undesirable vibration of hand-held surgical instruments which results in imprecisions and poor surgical outcomes. Existing tremor cancellation algorithms are based on detection of the tremulous component from the whole motion; then adding an anti-phase tremor signal to the whole motion to cancel it out. These techniques are based on adaptive filtering algorithms which need a reference signal that is highly correlated with the actual tremor signal.

View Article and Find Full Text PDF

The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices.

View Article and Find Full Text PDF

A clinical decision support system forms a critical capability to link health observations with health knowledge to influence choices by clinicians for improved healthcare. Recent trends toward remote outsourcing can be exploited to provide efficient and accurate clinical decision support in healthcare. In this scenario, clinicians can use the health knowledge located in remote servers via the Internet to diagnose their patients.

View Article and Find Full Text PDF

In this paper, we propose a novel computer vision-based fall detection system for monitoring an elderly person in a home care, assistive living application. Initially, a single camera covering the full view of the room environment is used for the video recording of an elderly person's daily activities for a certain time period. The recorded video is then manually segmented into short video clips containing normal postures, which are used to compose the normal dataset.

View Article and Find Full Text PDF

We propose a novel computer vision based fall detection system for monitoring an elderly person in a home care application. Background subtraction is applied to extract the foreground human body and the result is improved by using certain post-processing. Information from ellipse fitting and a projection histogram along the axes of the ellipse are used as the features for distinguishing different postures of the human.

View Article and Find Full Text PDF

Considerable evidences have shown a decrease of neuronal activity in the left frontal lobe of depressed patients, but the underlying cortical network is still unclear. The present study intends to investigate the conscious-state brain network patterns in depressed patients compared with control individuals. Cortical functional connectivity is quantified by the partial directed coherence (PDC) analysis of multichannel EEG signals from 12 depressed patients and 12 healthy volunteers.

View Article and Find Full Text PDF

With the advance of computer and photonics technology, imaging photoplethysmography [(PPG), iPPG] can provide comfortable and comprehensive assessment over a wide range of anatomical locations. However, motion artifact is a major drawback in current iPPG systems, particularly in the context of clinical assessment. To overcome this issue, a new artifact-reduction method consisting of planar motion compensation and blind source separation is introduced in this study.

View Article and Find Full Text PDF

A novel second-order-statistics-based sequential blind extraction algorithm for blind extraction of quasi-periodic signals, with time-varying period, is introduced in this paper. Source extraction is performed by sequentially converging to a solution that effectively diagonalizes autocorrelation matrices at lags corresponding to the time-varying period, which thereby explicitly exploits a key statistical nonstationary characteristic of the desired source. The algorithm is shown to have fast convergence and yields significant improvement in signal-to-interference ratio as compared to when the algorithm assumes a fixed period.

View Article and Find Full Text PDF

A novel scheme for the removal of eye-blink (EB) artifacts from electroencephalogram (EEG) signals based on a novel space-time-frequency (STF) model of EEGs and robust minimum variance beamformer (RMVB) is proposed. In this method, in order to remove the artifact, the RMVB is provided with a priori information, namely, an estimation of the steering vector corresponding to the point source EB artifact. The artifact-removed EEGs are subsequently reconstructed by deflation.

View Article and Find Full Text PDF

This paper compares two methods for extracting room acoustic parameters from reverberated speech and music. An approach which uses statistical machine learning, previously developed for speech, is extended to work with music. For speech, reverberation time estimations are within a perceptual difference limen of the true value.

View Article and Find Full Text PDF

In this paper a novel scheme for the removal of eye-blink (EB) artifacts from electroencephalogram (EEG) signals based on the robust minimum variance beamformer (RMVB) is proposed. In this method, in order to remove the artifact, the RMVB is provided with a priori information, i.e.

View Article and Find Full Text PDF

Pulsed wave (PW) Doppler ultrasound systems are commonly used to examine blood flow dynamics and the technique plays a very important role in numerous diagnostic applications. Commonly, narrow-band PW systems estimate the blood velocity using an autocorrelation-based estimator. Herein, we examine a recently proposed hybrid frequency estimator, and via extensive numerical simulations using simulated blood scatterers show the achievable performance gain of this method as compared to the traditional approach.

View Article and Find Full Text PDF

The underdetermined blind source separation problem using a filtering approach is addressed. An extension of the FastICA algorithm is devised which exploits the disparity in the kurtoses of the underlying sources to estimate the mixing matrix and thereafter achieves source recovery by employing the ll-norm algorithm. Besides, we demonstrate how promising FastICA can be to extract the sources.

View Article and Find Full Text PDF

This paper addresses the problem of fetal electrocardiogram extraction using blind source separation (BSS) in the wavelet domain. A new approach is proposed, which is particularly advantageous when the mixing environment is noisy and time-varying, and that is shown, analytically and in simulation, to improve the convergence rate of the natural gradient algorithm. The distribution of the wavelet coefficients of the source signals is then modeled by a generalized Gaussian probability density, whereby in the time-scale domain the problem of selecting appropriate nonlinearities when separating mixtures of both sub- and super-Gaussian signals is mitigated, as shown by experimental results.

View Article and Find Full Text PDF

Objective: To describe a modified ventral stabilization technique for surgical management of atlantoaxial subluxation in dogs and to evaluate the outcome.

Study Design: Retrospective clinical study.

Sample Population: Nineteen client-owned dogs.

View Article and Find Full Text PDF