Hemodynamic forces are related to pathological variations of the cardiovascular system, and numerical simulations for fluid-structure interaction have been systematically used to analyze the behavior of blood flow and the arterial wall in aortic aneurysms. This paper proposes a comparative analysis of 1-way and 2-way coupled fluid-structure interaction for aortic arch aneurysm. The coupling models of fluid-structure interaction were conducted using 3D geometry of the thoracic aorta from computed tomography.
View Article and Find Full Text PDFBackground: Ultrasound vector flow imaging (VFI) shows potential as an emerging non-invasive modality for time-resolved flow mapping. However, its efficacy in tracking multidirectional pulsatile flow with temporal resolvability has not yet been systematically evaluated because of the lack of an appropriate test protocol.
Purpose: We present the first systematic performance investigation of VFI in tracking pulsatile flow in a meticulously designed scenario with time-varying, omnidirectional flow fields (with flow angles from 0° to 360°).
In this study we apply methods to determine the tendency for thrombus formation in different central venous catheters (CVC) models associated with flow rate variation. To calculate the thrombogenic potential, we proposed a new numerical model of the platelet lysis index (PLI) equation. To compare the results of PLI and flow rate in different models of catheters, numerical calculations were performed on three different tips of CVC.
View Article and Find Full Text PDFThe formation of thrombi in medical devices that come into contact with blood is a common cause of increased morbidity and mortality. Prolonged use of central venous catheters (CVCs) may cause high infection rates or compromise CVC patency due to thrombus development. In this study, we sought insights into possible changes in the hemostatic system during prolonged use of inserted CVCs for hemodialysis by assessing platelets by CD62P and CD41a expression and the potential for thrombin generation (TG).
View Article and Find Full Text PDF