Publications by authors named "Jonathan Zung"

Neurons in the developing brain undergo extensive structural refinement as nascent circuits adopt their mature form. This physical transformation of neurons is facilitated by the engulfment and degradation of axonal branches and synapses by surrounding glial cells, including microglia and astrocytes. However, the small size of phagocytic organelles and the complex, highly ramified morphology of glia have made it difficult to define the contribution of these and other glial cell types to this crucial process.

View Article and Find Full Text PDF

Learning from experience depends at least in part on changes in neuronal connections. We present the largest map of connectivity to date between cortical neurons of a defined type (layer 2/3 [L2/3] pyramidal cells in mouse primary visual cortex), which was enabled by automated analysis of serial section electron microscopy images with improved handling of image defects (250 × 140 × 90 μm volume). We used the map to identify constraints on the learning algorithms employed by the cortex.

View Article and Find Full Text PDF
Article Synopsis
  • A semi-automated reconstruction of the L2/3 region of the mouse primary visual cortex was created using electron microscopy images, capturing various cell types and structures important for understanding visual processing.
  • The data includes visual response characteristics of pyramidal cells and is available for public access, along with interactive tools for analysis.
  • Research highlights how the organization of mitochondria and synapses relates to cell location, while predicting connectivity patterns in pyramidal cells correlates with their visual response strength and reliability.
View Article and Find Full Text PDF
Article Synopsis
  • Advances in automated imaging now allow for the mapping of entire brains, with projects needing significant time for data proofreading due to their size.
  • FlyWire is introduced as an online platform that enables collaborative proofreading of neural circuits in fruit flies, utilizing 3D interactive tools for efficient editing from anywhere.
  • The platform encourages community participation, enhances data accuracy, and promotes faster scientific discoveries, showcased through the analysis of mechanosensory neurons' connectome.
View Article and Find Full Text PDF

Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex.

View Article and Find Full Text PDF