Despite the significant advances made involving the additive manufacturing (AM) of metals, including those related to both materials and processes, challenges remain in regard to the rapid qualification and insertion of such materials into applications. In general, understanding the process-microstructure-property interrelationships is essential. To successfully understand these interrelationships on a process-by-process basis and exploit such knowledge in practice, leveraging monitoring, modeling, and statistical analysis is necessary.
View Article and Find Full Text PDFHypothesis: Grafting nanoparticles surfaces with water-soluble polymers modify interparticle interactions that are pivotal for assembling them into ordered phases. By manipulating salt concentrations of gold nanoparticles (AuNPs) that are grafted with poly(N-isopropylacrylamide) (PNIPAM-AuNPs), we hypothesize that various aggregated phases form at the suspension/vapor interface or in the bulk that depend on the molecular weight (MW) of PNIPAM and on salt concentrations.
Experiments: AuNPs are grafted with thiolated PNIPAM of molecular weights of 3 or 6 kDa, and grafting is confirmed by dynamic light scattering.