Publications by authors named "Jonathan Y Shih"

Classic spectrotemporal receptive fields (STRFs) for auditory neurons are usually expressed as a single linear filter representing a single encoded stimulus feature. Multifilter STRF models represent the stimulus-response relationship of primary auditory cortex (A1) neurons more accurately because they can capture multiple stimulus features. To determine whether multifilter processing is unique to A1, we compared the utility of single-filter versus multifilter STRF models in the medial geniculate body (MGB), anterior auditory field (AAF), and A1 of ketamine-anesthetized cats.

View Article and Find Full Text PDF

Cochlear implant electrical stimulation of the auditory system to rehabilitate deafness has been remarkably successful. Its deployment requires both an intact auditory nerve and a suitably patent cochlear lumen. When disease renders prerequisite conditions impassable, such as in neurofibromatosis type II and cochlear obliterans, alternative treatment targets are considered.

View Article and Find Full Text PDF

Studies of patterned spontaneous activity can elucidate how the organization of neural circuits emerges. Using in vivo two-photon Ca(2+) imaging, we studied spatio-temporal patterns of spontaneous activity in the optic tectum of Xenopus tadpoles. We found rhythmic patterns of global synchronous spontaneous activity between neurons, which depends on visual experience and developmental stage.

View Article and Find Full Text PDF

Inhibitory interneurons constitute ∼20% of auditory cortical cells and are essential for shaping sensory processing. Connectivity patterns of interneurons in relation to functional organization principles are not well understood. We contrasted the connection patterns of parvalbumin-immunoreactive cells in two functionally distinct cortical regions: the tonotopic, narrowly frequency-tuned module [central narrow band (cNB)] of cat central primary auditory cortex (AI) and the nontonotopic, broadly tuned second auditory field (AII).

View Article and Find Full Text PDF

We analyzed the receptive field information conveyed by interspike intervals (ISIs) in the auditory cortex. In the visual system, different ISIs may both code for different visual features and convey differing amounts of stimulus information. To determine their potential role in auditory signal processing, we obtained extracellular recordings in the primary auditory cortex (AI) of the cat while presenting a dynamic moving ripple stimulus and then used the responses to construct spectrotemporal receptive fields (STRFs).

View Article and Find Full Text PDF