Rapamycin (sirolimus) is an FDA approved drug with immune modulating properties that is being prescribed off-label in adults as a preventative therapy to maintain healthspan. We recently published one of the first reports on 333 adults with a history of off-label rapamycin use. Along with presenting evidence that rapamycin can be used safely in adults of normal health status, we discovered that about 26% of rapamycin users also reported oral health changes.
View Article and Find Full Text PDFRapamycin (sirolimus) is an FDA-approved drug with immune-modulating and growth-inhibitory properties. Preclinical studies have shown that rapamycin extends lifespan and healthspan metrics in yeast, invertebrates, and rodents. Several physicians are now prescribing rapamycin off-label as a preventative therapy to maintain healthspan.
View Article and Find Full Text PDFMedication-related osteonecrosis of the jaw (MRONJ) is a serious side effect of antiresorptive medications such as denosumab (humanized anti-RANKL antibody), yet its pathophysiology remains elusive. It has been posited that inhibition of osteoclastic bone resorption leads to the pathological sequelae of dead bone accumulation, impaired new bone formation, and poor wound healing in MRONJ, but this hypothesis has not been definitively tested. We previously engineered myeloid precursors with a conditional receptor activator of nuclear factor kappa-Β intracellular domain (iRANK cells), which differentiate into osteoclasts in response to a chemical inducer of dimerization (CID) independently of RANKL.
View Article and Find Full Text PDFPeriodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The FDA-approved drug rapamycin slows aging and extends lifespan in multiple organisms, including mice.
View Article and Find Full Text PDFAge is the single greatest risk factor for many diseases, including oral diseases. Despite this, a majority of preclinical oral health research has not adequately considered the importance of aging in research aimed at the mechanistic understanding of oral disease. Here, we have attempted to provide insights from animal studies in the geroscience field and apply them in the context of oral health research.
View Article and Find Full Text PDFThe inactivation of ribosomal protein S6 kinase 1 (S6K1) recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO) mouse model of Leigh Syndrome caused by Complex I deficiency.
View Article and Find Full Text PDFInterventions that target biological mechanisms of aging have great potential to enhance quality of life by delaying morbidity and mortality. The FDA-approved drug rapamycin is a compelling candidate for such an intervention. In a previous study, it was reported that 3 months of rapamycin treatment is sufficient to increase life expectancy and remodel the gut microbiome in aged mice.
View Article and Find Full Text PDFBackground: Protease-Activated Receptors (PARs), members of G-protein-coupled receptors, are activated by proteolytic activity of various proteases. Activation of PAR1 and PAR2 triggers innate immune responses in human oral keratinocytes (HOKs), but the signaling pathways downstream of PAR activation in HOKs have not been clearly defined. In this study, we aimed to determine if PAR1- and PAR2-mediated signaling differs in the induction of innate immune markers CXCL3, CXCL5 and CCL20 via ERK, p38 and PI3K/Akt.
View Article and Find Full Text PDFProtease-activated receptors (PARs), nucleotide-binding oligomerization domain (NOD) receptors and Toll-like receptors (TLRs) play a role in innate immunity, but little is known about interaction between these receptors. The goal of this study was to investigate how silencing one receptor affects the expression of other receptors and downstream innate immune markers in response to bacteria. Human gingival epithelial cells (GECs) were transfected with siRNA specific for PAR1 or PAR2, then stimulated with periopathogen Porphyromonas gingivalis, bridging organism between pathogens and non-pathogens Fusobacterium nucleatum, or non-pathogen Streptococcus gordonii.
View Article and Find Full Text PDF