Publications by authors named "Jonathan Winawer"

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval.

View Article and Find Full Text PDF

Perception, working memory, and long-term memory each evoke neural responses in visual cortex. While previous neuroimaging research on the role of visual cortex in memory has largely emphasized similarities between perception and memory, we hypothesized that responses in visual cortex would differ depending on the origins of the inputs. Using fMRI, we quantified spatial tuning in visual cortex while participants (both sexes) viewed, maintained in working memory, or retrieved from long-term memory a peripheral target.

View Article and Find Full Text PDF

Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called "crowding", is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding behavior to investigate its biological basis.

View Article and Find Full Text PDF

Attention enables us to efficiently and flexibly interact with the environment by prioritizing some image features in preparation for responding to a stimulus. Using a concurrent psychophysics- fMRI experiment, we investigated how covert spatial attention affects responses in human visual cortex prior to target onset, and how it affects subsequent behavioral performance. Performance improved at cued locations and worsened at uncued locations, relative to distributed attention, demonstrating a selective tradeoff in processing.

View Article and Find Full Text PDF

An influential account of neuronal responses in primary visual cortex is the normalized energy model. This model is often implemented as a multi-stage computation. The first stage is linear filtering.

View Article and Find Full Text PDF

Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval.

View Article and Find Full Text PDF

Crowding is the failure to recognize an object due to surrounding clutter. Our visual crowding survey measured 13 crowding distances (or "critical spacings") twice in each of 50 observers. The survey includes three eccentricities (0, 5, and 10 deg), four cardinal meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli).

View Article and Find Full Text PDF

Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system.

View Article and Find Full Text PDF

The discriminability of motion direction is asymmetric, with some motion directions that are better discriminated than others. For example, discrimination of directions near the cardinal axes (upward/downward/leftward/rightward) tends to be better than oblique directions. Here, we tested discriminability for multiple motion directions at multiple polar angle locations.

View Article and Find Full Text PDF

Adult visual performance differs with angular location -it is better for stimuli along the horizontal than vertical, and lower than upper vertical meridian of the visual field. These perceptual asymmetries are paralleled by asymmetries in cortical surface area in primary visual cortex (V1). Children, unlike adults, have similar visual performance at the lower and upper vertical meridian.

View Article and Find Full Text PDF

Unlabelled: Neuronal oscillations at about 10 Hz, called alpha oscillations, are often thought to arise from synchronous activity across occipital cortex, reflecting general cognitive states such as arousal and alertness. However, there is also evidence that modulation of alpha oscillations in visual cortex can be spatially specific. Here, we used intracranial electrodes in human patients to measure alpha oscillations in response to visual stimuli whose location varied systematically across the visual field.

View Article and Find Full Text PDF

Our experience of time can feel dilated or compressed, rather than reflecting true "clock time." Although many contextual factors influence the subjective perception of time, it is unclear how memory accessibility plays a role in constructing our experience of and memory for time. Here, we used a combination of behavioral and functional MRI measures in healthy young adults ( = 147) to ask the question of how memory is incorporated into temporal duration judgments.

View Article and Find Full Text PDF

Reactivation of earlier perceptual activity is thought to underlie long-term memory recall. Despite evidence for this view, it is unclear whether mnemonic activity exhibits the same tuning properties as feedforward perceptual activity. Here, we leverage population receptive field models to parameterize fMRI activity in human visual cortex during spatial memory retrieval.

View Article and Find Full Text PDF

How variable is the functionally defined structure of early visual areas in human cortex and how much variability is shared between twins? Here we quantify individual differences in the best understood functionally defined regions of cortex: V1, V2, V3. The Human Connectome Project 7T Retinotopy Dataset includes retinotopic measurements from 181 subjects (109 female, 72 male), including many twins. We trained four "anatomists" to manually define V1-V3 using retinotopic features.

View Article and Find Full Text PDF

Neural responses to visual stimuli exhibit complex temporal dynamics, including subadditive temporal summation, response reduction with repeated or sustained stimuli (adaptation), and slower dynamics at low contrast. These phenomena are often studied independently. Here, we demonstrate these phenomena within the same experiment and model the underlying neural computations with a single computational model.

View Article and Find Full Text PDF

To what extent is the size of the BOLD response influenced by factors other than neural activity? In a reanalysis of three neuroimaging datasets (male and female human participants), we find large systematic inhomogeneities in the BOLD response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses, expressed in units of percent signal change, are up to 50% larger along the representation of the horizontal meridian than the vertical meridian. To assess whether this surprising effect can be interpreted as differences in local neural activity, we quantified several factors that potentially contribute to the size of the BOLD response. We find relationships between BOLD response magnitude and cortical thickness, curvature, depth, and macrovasculature.

View Article and Find Full Text PDF

In the domain of human neuroimaging, much attention has been paid to the question of whether and how the development of functional magnetic resonance imaging (fMRI) has advanced our scientific knowledge of the human brain. However, the opposite question is also important; how has our knowledge of the brain advanced our understanding of fMRI? Here, we discuss how and why scientific knowledge about the human and animal visual system has been used to answer fundamental questions about fMRI as a brain measurement tool and how these answers have contributed to scientific discoveries beyond vision science.

View Article and Find Full Text PDF

Individual differences among human brains exist at many scales, spanning gene expression, white matter tissue properties, and the size and shape of cortical areas. One notable example is an approximately 3-fold range in the size of human primary visual cortex (V1), a much larger range than is found in overall brain size. A previous study (Andrews et al.

View Article and Find Full Text PDF

A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals.

View Article and Find Full Text PDF

Neurons in primate visual cortex (area V1) are tuned for spatial frequency, in a manner that depends on their position in the visual field. Several studies have examined this dependency using functional magnetic resonance imaging (fMRI), reporting preferred spatial frequencies (tuning curve peaks) of V1 voxels as a function of eccentricity, but their results differ by as much as two octaves, presumably owing to differences in stimuli, measurements, and analysis methodology. Here, we characterize spatial frequency tuning at a millimeter resolution within the human primary visual cortex, across stimulus orientation and visual field locations.

View Article and Find Full Text PDF

Visual performance varies around the visual field. It is best near the fovea compared to the periphery, and at iso-eccentric locations it is best on the horizontal, intermediate on the lower, and poorest on the upper meridian. The fovea-to-periphery performance decline is linked to the decreases in cone density, retinal ganglion cell (RGC) density, and V1 cortical magnification factor (CMF) as eccentricity increases.

View Article and Find Full Text PDF

Synchronization of neuronal responses over large distances is hypothesized to be important for many cortical functions. However, no straightforward methods exist to estimate synchrony non-invasively in the living human brain. MEG and EEG measure the whole brain, but the sensors pool over large, overlapping cortical regions, obscuring the underlying neural synchrony.

View Article and Find Full Text PDF

Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols.

View Article and Find Full Text PDF

Computational models which predict the neurophysiological response from experimental stimuli have played an important role in human neuroimaging. One type of computational model, the population receptive field (pRF), has been used to describe cortical responses at the millimeter scale using functional magnetic resonance imaging (fMRI) and electrocorticography (ECoG). However, pRF models are not widely used for non-invasive electromagnetic field measurements (EEG/MEG), because individual sensors pool responses originating from several centimeter of cortex, containing neural populations with widely varying spatial tuning.

View Article and Find Full Text PDF

Human vision has striking radial asymmetries, with performance on many tasks varying sharply with stimulus polar angle. Performance is generally better on the horizontal than vertical meridian, and on the lower than upper vertical meridian, and these asymmetries decrease gradually with deviation from the vertical meridian. Here, we report cortical magnification at a fine angular resolution around the visual field.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session62k7l4h6rh964tchg0el49an82lah00n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once