Publications by authors named "Jonathan Weissman"

Many agents that show promise in preclinical cancer models lack efficacy in patients due to patient heterogeneity that is not captured in traditional assays. To address this problem, we have developed GENEVA, a platform that measures the molecular and phenotypic consequences of drug perturbations within diverse populations of cancer cells at single-cell resolution, both and . Here, we apply GENEVA to study the KRAS G12C inhibitors, recapitulating known properties of these drugs and uncovering a previously unknown role for mitochondrial activation in cell death induced by KRAS inhibition.

View Article and Find Full Text PDF

Macrophages hold tremendous promise as effectors of cancer immunotherapy, but the best strategies to provoke these cells to attack tumors remain unknown. Here, we evaluated the therapeutic potential of targeting two distinct macrophage immune checkpoints: CD47 and CD24. We found that antibodies targeting these antigens could elicit maximal levels of phagocytosis when combined together in vitro.

View Article and Find Full Text PDF

Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes . Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations.

View Article and Find Full Text PDF

Understanding how human gene expression is coordinately regulated by functional units of proteins across the genome remains a major biological goal. Here, we present COMET, a high-throughput screening platform for combinatorial effector targeting for the identification of transcriptional modulators. We generate libraries of combinatorial dCas9-based fusion proteins, containing two to six effector domains, allowing us to systematically investigate more than 110,000 combinations of effector proteins at endogenous human loci for their influence on transcription.

View Article and Find Full Text PDF

Quantifying spatiotemporal dynamics during embryogenesis is crucial for understanding congenital diseases. We developed Spateo (https://github.com/aristoteleo/spateo-release), a 3D spatiotemporal modeling framework, and applied it to a 3D mouse embryogenesis atlas at E9.

View Article and Find Full Text PDF

Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a -driven mouse model of lung adenocarcinoma.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers aim to better understand the protein-coding genome due to its importance in human health, while questioning what previous genomic studies may have overlooked regarding non-canonical open reading frames (ncORFs).
  • Over the last ten years, ncORFs have shown potential relevance in human cell types and diseases, but their impact on the human proteome was previously unclear, prompting a collaborative effort to analyze their protein-level evidence.
  • The study found that 25% of analyzed ncORFs contribute to translated proteins, resulting in over 3,000 new peptides from extensive mass spectrometry data, and established an annotation framework and public tools to support ongoing research in this area.
View Article and Find Full Text PDF

The detection of mitochondrial DNA (mtDNA) mutations in single cells holds considerable potential to define clonal relationships coupled with information on cell state in humans. Previous methods focused on higher heteroplasmy mutations that are limited in number and can be influenced by functional selection, introducing biases for lineage tracing. Although more challenging to detect, intermediate to low heteroplasmy mtDNA mutations are valuable due to their high diversity, abundance, and lower propensity to selection.

View Article and Find Full Text PDF

Cells must adapt to environmental changes to maintain homeostasis. One of the most striking environmental adaptations is entry into hibernation during which core body temperature can decrease from 37°C to as low at 4°C. How mammalian cells, which evolved to optimally function within a narrow range of temperatures, adapt to this profound decrease in temperature remains poorly understood.

View Article and Find Full Text PDF

Single cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are often noisy due to cost and technical constraints, limiting power to detect true effects with conventional differential expression analyses. Here, we introduce TRanscriptome-wide Analysis of Differential Expression (TRADE), a statistical framework which estimates the transcriptome-wide distribution of true differential expression effects from noisy gene-level measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Prion diseases happen when a special protein in the brain gets twisted wrong, which can cause serious memory problems and even death.
  • Researchers created something called CHARM, a tool that can change how our DNA works to stop these bad proteins from causing harm.
  • In tests with mice, CHARM successfully turned off the harmful protein in their brains and could help treat other brain diseases too!
View Article and Find Full Text PDF

Control of cellular identity requires coordination of developmental programs with environmental factors such as nutrient availability, suggesting that perturbing metabolism can alter cell state. Here, we find that nucleotide depletion and DNA replication stress drive differentiation in human and murine normal and transformed hematopoietic systems, including patient-derived acute myeloid leukemia (AML) xenografts. These cell state transitions begin during S phase and are independent of ATR/ATM checkpoint signaling, double-stranded DNA break formation, and changes in cell cycle length.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) account for the largest portion of RNA from the transcriptome, yet most of their functions remain unknown. Here, we performed two independent high-throughput CRISPRi screens to understand the role of lncRNAs in monocyte function and differentiation. The first was a reporter-based screen to identify lncRNAs that regulate TLR4-NFkB signaling in human monocytes and the second screen identified lncRNAs involved in monocyte to macrophage differentiation.

View Article and Find Full Text PDF

Learning and memory require activity-induced changes in dendritic translation, but which mRNAs are involved and how they are regulated are unclear. In this study, to monitor how depolarization impacts local dendritic biology, we employed a dendritically targeted proximity labeling approach followed by crosslinking immunoprecipitation, ribosome profiling and mass spectrometry. Depolarization of primary cortical neurons with KCl or the glutamate agonist DHPG caused rapid reprogramming of dendritic protein expression, where changes in dendritic mRNAs and proteins are weakly correlated.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial outer membrane α-helical proteins are essential for communication between mitochondria and the cytoplasm, but their targeting and insertion processes are not fully understood.
  • A study using genome-wide CRISPRi screens identified key factors involved in the biogenesis of these proteins, revealing distinct pathways based on the proteins' topology.
  • Specific components like NAC and TTC1 play critical roles in how different types of membrane proteins are targeted and inserted, with TTC1 acting as a chaperone that aids in the solubilization and insertion of signal-anchored proteins into the mitochondria.
View Article and Find Full Text PDF

Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing.

View Article and Find Full Text PDF

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs). Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging.

View Article and Find Full Text PDF

Mapping genetic interactions is essential for determining gene function and defining novel biological pathways. We report a simple to use CRISPR interference (CRISPRi) based platform, compatible with Fluorescence Activated Cell Sorting (FACS)-based reporter screens, to query epistatic relationships at scale. This is enabled by a flexible dual-sgRNA library design that allows for the simultaneous delivery and selection of a fixed sgRNA and a second randomized guide, comprised of a genome-wide library, with a single transduction.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used a technique called Perturb-seq to study how disabling certain host factors affects SARS-CoV-2 infection in human lung cells.
  • They discovered that only a small number of these host factors significantly altered the infection process and the body’s immune response.
  • Notably, they identified specific factors, like IκBα and translation factors EIF4E2 and EIF4H, as critical for early stages of the infection, advancing understanding of how the virus interacts with host cells.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial outer membrane α-helical proteins are essential for communication between mitochondria and the cytoplasm, but how they're targeted and inserted remains unclear.
  • A study used genome-wide CRISPRi screens to identify necessary mammalian biogenesis factors, revealing that different membrane proteins follow unique targeting pathways based on their structure.
  • Key findings include the role of NAC in targeting polytopic proteins and TTC1, a new chaperone, for signal-anchored proteins, highlighting a similar process to how proteins are managed in the endoplasmic reticulum.
View Article and Find Full Text PDF

The genetic principle of synthetic lethality is clinically validated in cancers with loss of specific DNA damage response (DDR) pathway genes (i.e. BRCA1/2 tumor suppressor mutations).

View Article and Find Full Text PDF

Comparative studies of great apes provide a window into our evolutionary past, but the extent and identity of cellular differences that emerged during hominin evolution remain largely unexplored. We established a comparative loss-of-function approach to evaluate whether human cells exhibit distinct genetic dependencies. By performing genome-wide CRISPR interference screens in human and chimpanzee pluripotent stem cells, we identified 75 genes with species-specific effects on cellular proliferation.

View Article and Find Full Text PDF

Translation of mRNAs containing premature termination codons (PTCs) results in truncated protein products with deleterious effects. Nonsense-mediated decay (NMD) is a surveillance pathway responsible for detecting PTC containing transcripts. Although the molecular mechanisms governing mRNA degradation have been extensively studied, the fate of the nascent protein product remains largely uncharacterized.

View Article and Find Full Text PDF