Ecotones are the transition zones between ecosystems and can exhibit steep gradients in ecosystem properties controlling flows of energy and organisms between them. Ecotones are understood to be sensitive to climate and environmental changes, but the potential for spatiotemporal dynamics of ecotones to act as indicators of such changes is limited by methodological and logistical constraints. Here, we use a novel combination of satellite remote sensing and analyses of spatial synchrony to identify the tropical dry forest-rainforest ecotone in Area de Conservación Guanacaste, Costa Rica.
View Article and Find Full Text PDFContext: Prognostication challenges contribute to delays in advance care planning (ACP) for patients with cancer near the end of life (EOL).
Objectives: Examine a quality improvement mortality prediction algorithm intervention's impact on ACP documentation and EOL care.
Methods: We implemented a validated mortality risk prediction machine learning model for solid malignancy patients admitted from the emergency department (ED) to a dedicated solid malignancy unit at Duke University Hospital.
Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging.
View Article and Find Full Text PDFIncidence of Lyme disease, a tick-borne illness prevalent in the US, is increasing in endemic regions and regions with no previous history of the disease, significantly impacting public health. We examined space-time patterns of Lyme disease incidence and the influence of ecological and social factors on spatial synchrony, i.e.
View Article and Find Full Text PDFUnder global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L.
View Article and Find Full Text PDFSpatial synchrony is the tendency for population fluctuations to be correlated among different locations. This phenomenon is a ubiquitous feature of population dynamics and is important for ecosystem stability, but several aspects of synchrony remain unresolved. In particular, the extent to which any particular mechanism, such as dispersal, contributes to observed synchrony in natural populations has been difficult to determine.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood.
View Article and Find Full Text PDFImportant clues about the ecological effects of climate change can arise from understanding the influence of other Earth-system processes on ecosystem dynamics but few studies span the inter-decadal timescales required. We, therefore, examined how variation in annual weather patterns associated with the North Atlantic Oscillation (NAO) over four decades was linked to synchrony and stability in a metacommunity of stream invertebrates across multiple, contrasting headwaters in central Wales (UK). Prolonged warmer and wetter conditions during positive NAO winters appeared to synchronize variations in population and community composition among and within streams thereby reducing stability across levels of ecological organization.
View Article and Find Full Text PDFSerological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades.
View Article and Find Full Text PDFAbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals.
View Article and Find Full Text PDFContext: While professional societies and expert panels have recommended quality indicators related to advance care planning (ACP) documentation, including using structured documentation templates, it is unclear how clinicians document these conversations.
Objective: To explore how clinicians document ACP, specifically, which components of these conversations are documented.
Methods: A codebook was developed based on existing frameworks for ACP conversations and documentation.
Curr Opin Insect Sci
October 2022
The causes of spatial synchrony in population dynamics are often elusive. We review how recent advances have enhanced understanding of the causes of the spatial synchrony of insect populations and revealed previously underappreciated complexities in patterns of synchrony. We highlight how regional-scale studies of population genetic structure have helped elucidate the role of dispersal in population synchronization and how novel data-analytic approaches have revealed variation in spatial synchrony across timescales and geographies and the underlying drivers.
View Article and Find Full Text PDFTemperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non-native forest pest (L.
View Article and Find Full Text PDFSpatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA.
View Article and Find Full Text PDFSpatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, 'tail-dependent' follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline.
View Article and Find Full Text PDFSynchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics.
View Article and Find Full Text PDFStudies of biological invasions at the macroscale or across multiple scales can provide important insights for management, particularly when localized information about invasion dynamics or environmental contexts is unavailable. In this study, we performed a macroscale analysis of the roles of invasion drivers on the local scale dynamics of a high-profile pest, Lymantria dispar dispar L., with the purpose of improving the prioritization of vulnerable areas for treatment.
View Article and Find Full Text PDFSynchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony.
View Article and Find Full Text PDFBackground: Treatments for the suppression and eradication of insect populations undergo substantial testing to ascertain their efficacy and safety, but the generally limited spatial and temporal scope of such studies limit knowledge of how contextual factors encountered in operational contexts shape the relative success of pest management treatments. These contextual factors potentially include ecological characteristics of the treated area, or the timing of treatments relative to pest phenology and weather events. We used an extensive database on over 1000 treatments of nascent populations of Lymantria dispar (L.
View Article and Find Full Text PDFAlthough different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase-lagged relationships.
View Article and Find Full Text PDFPopulation cycles are fundamentally linked with spatial synchrony, the prevailing paradigm being that populations with cyclic dynamics are easily synchronised. That is, population cycles help give rise to spatial synchrony. Here we demonstrate this process can work in reverse, with synchrony causing population cycles.
View Article and Find Full Text PDFPeriodical cicadas exhibit an extraordinary capacity for self-organizing spatially synchronous breeding behavior. The regular emergence of periodical cicada broods across the United States is a phenomenon of longstanding public and scientific interest, as the cicadas of each brood emerge in huge numbers and briefly dominate their ecosystem. During the emergence, the 17-year periodical cicada species is found to form synchronized choruses, and we investigated their chorusing behavior from the standpoint of spatial synchrony.
View Article and Find Full Text PDFBackground: Periprosthetic tibial fracture after unicompartmental knee replacement is a challenging post-operative complication. Patients have an increased risk of mortality after fracture, the majority undergo further surgery, and the revision operations are less successful. Inappropriate surgical technique increases the risk of fracture, but it is unclear which technical aspects of the surgery are most problematic and no research has been performed on how surgical factors interact.
View Article and Find Full Text PDFExplaining why fluctuations in abundances of spatially disjunct populations often are correlated through time is a major goal of population ecologists. We address two hypotheses receiving little to no testing in wild populations: (i) that population cycling facilitates synchronization given weak coupling among populations, and (ii) that the ability of periodic external forces to synchronize oscillating populations is a function of the mismatch in timescales (detuning) between the force and the population. Here, we apply new analytical methods to field survey data on gypsy moth outbreaks.
View Article and Find Full Text PDFTaylor's law (TL), a commonly observed and applied pattern in ecology, describes variances of population densities as related to mean densities via log(variance) = log(a) + b*log(mean). Variations among datasets in the slope, b, have been associated with multiple factors of central importance in ecology, including strength of competitive interactions and demographic rates. But these associations are not transparent, and the relative importance of these and other factors for TL slope variation is poorly studied.
View Article and Find Full Text PDF