Publications by authors named "Jonathan W Dube"

A straightforward route for the preparation of a set of bis(cyclopropenium)-substituted phosphines is reported. Due to their dicationic nature, these ligands depict an excellent π-acceptor character. The effect of the ligand substituent pattern on the catalytic activity of the metal complexes thereof derived is also studied.

View Article and Find Full Text PDF

A series of structurally differentiated cationic arsines containing imidazolium, cyclopropenium, formamidinium, and pyridinium substituents have been synthesized through short and scalable routes. Evaluation of the donor properties of these compounds by IR spectroscopy and DFT calculations reveals similar σ-electron-releasing abilities for all of them; however, their π-acceptor properties are strongly influenced by the nature of the positively charged group. We describe the coordination chemistry of the newly prepared α-cationic arsines toward different metal centers and their reactivity in the presence of strong oxidants to afford cationic As(V) species.

View Article and Find Full Text PDF

The differing structures and reactivities of "GaI" samples prepared with different reaction times have been investigated in detail. Analysis by FT-Raman spectroscopy, powder X-ray diffraction, (71)Ga solid-state NMR spectroscopy, and (127)I nuclear quadrupole resonance (NQR) provides concrete evidence for the structure of each "GaI" sample prepared. These techniques are widely accessible and can be implemented quickly and easily to identify the nature of the "GaI" in hand.

View Article and Find Full Text PDF

Two unique systems based on low-coordinate main group elements that activate P4 are shown to quantitatively release the phosphorus cage upon short exposure to UV light. This reactivity marks the first reversible reactivity of P4, and the germanium system can be cycled 5 times without appreciable loss in activity. Theoretical calculations reveal that the LUMO is antibonding with respect to the main group element-phosphorus bonds and bonding with respect to reforming the P4 tetrahedron, providing a rationale for this unprecedented activity, and suggesting that the process is tunable based on the substituents.

View Article and Find Full Text PDF

The reaction of phosphine gas with a low coordinate diaryl germylene or diarylstannylene results in both oxidative addition and arene elimination at the group 14 atom. The products were characterised by (31)P NMR spectroscopy and X-ray crystallography, and represent the first P-H bond activation by a heavy group 14 element compound.

View Article and Find Full Text PDF

A collection of zwitterionic phosphanide metal carbonyl coordination complexes has been synthesized and fully characterized, representing the first isolated series of metal complexes for the triphosphenium family of compounds. The dicoordinate phosphorus atom of the zwitterion is formally in the +1 oxidation state and can coordinate to one metal, 2M (M = Cr, Mo, W) and 2Fe, or two metals, a Co2(CO)6 fragment 4, depending on the starting reagents. All complexes have been isolated in greater than 80% yield, and structures were confirmed crystallographically.

View Article and Find Full Text PDF

The bis(phosphino)borate ligand class is used as an anionic anchor to stabilize reactive, low coordinate arsenic centers. The neutral, zwitterionic As(I) species, 2, is formed very cleanly, and isolated in good yields using cyclohexene as a halogen scavenger. The uniqueness of this heterocyclic As(I) compound is on display with the coordination to Group 6 metal centers, (2 M(CO)5; M = Cr, Mo, W).

View Article and Find Full Text PDF

Go for the gold! Incorporating a borate anion into the backbone of a triphosphenium cation produces a unique zwitterionic phosphanide that can coordinate to one or two {AuCl} fragments depending on the steric bulk of the ligand (see picture; Au yellow, P purple, Cl green). Computational investigations show that in this μ-type ligand, the phosphorus atom behaves only as a σ,π donor.

View Article and Find Full Text PDF

The synthesis and structural characterization of dicationic selenium and tellurium analogues of the carbodiphosphorane and triphosphenium families of compounds are reported. These complexes, [Ch(dppe)][OTf](2) [Ch = Se, Te; dppe = 1,2-bis(diphenylphosphino)ethane; OTf = trifluoromethanesulfonate], are formed using [Ch](2+) reagents via a ligand-exchange protocol and represent extremely rare examples of homoleptic pnictogen → chalcogen coordination complexes. The corresponding arsenic compounds were also prepared, [Ch(dpAse)][OTf](2) [Ch = Se, Te; dpAse = 1,2-bis(diphenylarsino)ethane], exhibiting the first instance of an arsenic → chalcogen dative bond.

View Article and Find Full Text PDF

3-Aryl-3-(trifluormethyl)diazirine functionalized highly fluorinated phosphonium salts (HFPS) were synthesized, characterized, and utilized as photoinduced carbene precursors for covalent attachment of the HFPS onto cotton/paper to impart hydrophobicity to these surfaces. Irradiation of cotton and paper, as proof of concept substrates, treated with the diazirine-HFPS leads to robust hydrophobic cotton and paper surfaces with antiwetting properties, whereas the corresponding control samples absorb water readily. The contact angles of water were determined to be 139° and 137° for cotton and paper, respectively.

View Article and Find Full Text PDF

Analytically pure chloride and bromide salts of two different cyclic triphosphenium cations are prepared by the reaction of PX3 (X=Cl, Br) in the presence of the halogen-scavenging reagent cyclohexene. For the brominated species, the neutral, volatile 1,2-dibromocyclohexane byproduct is readily removed under reduced pressure, and the desired salts are obtained in high yield. Reactions involving phosphorus trichloride are complicated by the formation of salts containing both chloride and hydrogen dichloride anions.

View Article and Find Full Text PDF