J Mech Behav Biomed Mater
August 2020
Structural proteins in the extracellular matrix are subjected to a range of mechanical loading conditions, including varied directions of force application. Molecular modeling suggests that these mechanical forces directly affect collagen's conformation and the subsequent mechanical response at the molecular level is complex. For example, tensile forces in the axial direction result in collagen triple helix elongation and unwinding, while perpendicular forces can cause local triple helix disruption.
View Article and Find Full Text PDFRecent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage.
View Article and Find Full Text PDFMolecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development.
View Article and Find Full Text PDFTumor metastases and epithelial to mesenchymal transition (EMT) involve tumor cell invasion and migration through the dense collagen-rich extracellular matrix surrounding the tumor. Little is neither known about the mechanobiological mechanisms involved in this process, nor the role of the mechanical forces generated by the cells in their effort to invade and migrate through the stroma. In this paper we propose a new fundamental mechanobiological mechanism involved in cancer growth and metastasis, which can be both protective or destructive depending on the magnitude of the forces generated by the cells.
View Article and Find Full Text PDFCollagen cross-linking mechanically strengthens tissues during development and aging, but there is limited data describing how force transmitted across cross-links affects molecular conformation. We used Steered Molecular Dynamics (SMD) to model perpendicular force through a side chain. Results predicted that collagen peptides have negligible bending resistance and that mechanical force causes helix disruption below covalent bond failure strength, suggesting alternative molecular conformations precede cross-link rupture and macroscopic damage during mechanical loading.
View Article and Find Full Text PDFCollagen is a key structural protein in the extracellular matrix of many tissues. It provides biological tissues with tensile mechanical strength and is enzymatically cleaved by a class of matrix metalloproteinases known as collagenases. Collagen enzymatic kinetics has been well characterized in solubilized, gel, and reconstituted forms.
View Article and Find Full Text PDFHermansky-Pudlak Syndrome (HPS) is a genetically heterogeneous disorder characterized by oculocutaneous albinism and prolonged bleeding due to abnormal vesicle trafficking to lysosomes and related organelles such as melanosomes and platelet dense granules. This HPS database (HPSD; http://liweilab.genetics.
View Article and Find Full Text PDF