Publications by authors named "Jonathan Tzadikov"

Polymeric carbon nitride (CN) has emerged as an attractive material for photocatalysis and photoelectronic devices. However, the synthesis of porous CNs with controlled structural and optical properties remains a challenge, and processable CN precursors are still highly sought after for fabricating homogenous CN layers strongly bound to a given substrate. Here, we report a general method to synthesize highly dispersed porous CN materials that show excellent photocatalytic activity for the hydrogen evolution reaction and good performance as photoanodes in photoelectrochemical cells (PEC): first, supramolecular assemblies of melem and melamine in ethylene glycol and water are prepared using a hydrothermal process.

View Article and Find Full Text PDF

A general synthesis of carbon nitride (CN) films with extended optical absorption, excellent charge separation under illumination, and outstanding performance as a photoanode in water-splitting photoelectrochemical cells is reported. To this end, we introduced a universal method to rapidly grow CN monomers directly from a hot saturated solution on various substrates. Upon calcination, a highly uniform carbon nitride layer with tuned structural and photophysical properties and in intimate contact with the substrate is obtained.

View Article and Find Full Text PDF

The design of charge separation sites under illumination in semiconductors is a standing challenge for their utilization as photo(electro)catalysts. Here, the synthesis of modified carbon nitride materials (CNs) with donor-acceptor (D-A) domains, with altering electronic structure, is reported. To do so, new monomers based on polycyclic aromatic hydrocarbons (PAH)-substituted 1,3,5-triazine were designed, which were then embedded within cyanuric acid-melamine supramolecular assemblies to form CN precursors.

View Article and Find Full Text PDF

Transition-metal-carbon (CTM) composites show ample activity in many catalytic reactions. However, control of composition, distribution, and properties is challenging. Now, a straightforward path for the synthesis of transition-metal nanoparticles engulfed in crystalline carbon is presented with excellent control over the metal composition, amount, ratio, and catalytic properties.

View Article and Find Full Text PDF

The insertion of heteroatoms with different electronegativity into carbon materials can tune their chemical, electronic, and optical properties. However, in traditional solid-state synthesis, it is challenging to control the reactivity of monomers, and therefore, the amount and position of heteroatoms in the final materials. Herein, a simple, scalable, and general molten-state route to synthesize boron-nitrogen-carbon-oxygen (BNCO) materials with tunable boron-nitrogen-carbon composition, as well as electronic and optical properties, is reported.

View Article and Find Full Text PDF

Free standing centimeter-long 1D nanostructures are highly attractive for electronic and optoelectronic devices due to their unique photophysical and electrical properties. Here a simple, large-scale synthesis of centimeter-long 1D carbon nitride (CN) needles with tunable photophysical, electric, and catalytic properties is reported. Successful growth of ultralong needles is acquired by the utilization of 1D organic crystal precursors comprised of CN monomers as reactants.

View Article and Find Full Text PDF

2D carbon and nitrogen based semiconductors (CN) have attracted widespread attention for their possible use as low-cost and environmentally friendly materials for various applications. However, their limited solution-dispersibility and the difficulty in preparing exfoliated sheets with tunable photophysical properties restrain their exploitation in imaging-related applications. Here, the synthesis of carbon and nitrogen organic scaffolds with highly tunable optical properties, excellent dispersion in water and DMSO, and good bioimaging properties is reported.

View Article and Find Full Text PDF