The production of in vitro-derived platelets has great potential for transfusion medicine. Here, we build on our experience in the forward programming (FoP) of human pluripotent stem cells (hPSCs) to megakaryocytes (MKs) and address several aspects of the complex challenges to bring this technology to the bedside. We first identify clinical-grade hPSC lines that generate MKs efficiently.
View Article and Find Full Text PDFAntisense oligonucleotides (ASO) are DNA-based, disease-modifying drugs. Clinical trials with 2'-O-methoxyethyl (2'MOE) ASO have shown dose- and sequence-specific lowering of platelet counts according to two phenotypes. Phenotype 1 is a moderate (but not clinically severe) drop in platelet count.
View Article and Find Full Text PDFIn addition to their primary roles in hemostasis and thrombosis, platelets participate in many other physiological and pathological processes, including, but not limited to inflammation, wound healing, tumor metastasis, and angiogenesis. Among their most interesting properties is the large number of bioactive proteins stored in their α-granules, the major storage granule of platelets. We previously showed that platelets differentially package pro- and antiangiogenic proteins in distinct α-granules that undergo differential release upon platelet activation.
View Article and Find Full Text PDFTranslating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome.
View Article and Find Full Text PDFThe growth factor receptor Kit is involved in hematopoietic and nonhematopoietic development. Mice bearing Kit defects lack mast cells; however, strains bearing different Kit alleles exhibit diverse phenotypes. Herein, we investigated factors underlying differential sensitivity to IgG-mediated arthritis in 2 mast cell-deficient murine lines: KitWsh/Wsh, which develops robust arthritis, and KitW/Wv, which does not.
View Article and Find Full Text PDFPlatelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors.
View Article and Find Full Text PDFPlatelet transfusions total >2.17 million apheresis-equivalent units per year in the United States and are derived entirely from human donors, despite clinically significant immunogenicity, associated risk of sepsis, and inventory shortages due to high demand and 5-day shelf life. To take advantage of known physiological drivers of thrombopoiesis, we have developed a microfluidic human platelet bioreactor that recapitulates bone marrow stiffness, extracellular matrix composition,micro-channel size, hemodynamic vascular shear stress, and endothelial cell contacts, and it supports high-resolution live-cell microscopy and quantification of platelet production.
View Article and Find Full Text PDFTrends Biochem Sci
December 2014
An entrepreneurial movement within science strives to invert the classical trajectory of academic research careers by positioning trainees at the apex of burgeoning industries. Young scientists today have nothing to lose and everything to gain by pursuing this 'third road', and academic institutes and established companies only stand to benefit from supporting this emerging movement of discovery research with economic purpose.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) provide a potentially replenishable source for the production of transfusable platelets. Here, we describe a method to generate megakaryocytes (MKs) and functional platelets from iPSCs in a scalable manner under serum/feeder-free conditions. The method also permits the cryopreservation of MK progenitors, enabling a rapid "surge" capacity when large numbers of platelets are needed.
View Article and Find Full Text PDFBone marrow megakaryocytes produce platelets by extending long cytoplasmic protrusions, designated proplatelets, into sinusoidal blood vessels. Although microtubules are known to regulate platelet production, the underlying mechanism of proplatelet elongation has yet to be resolved. Here we report that proplatelet formation is a process that can be divided into repetitive phases (extension, pause, and retraction), as revealed by differential interference contrast and fluorescence loss after photoconversion time-lapse microscopy.
View Article and Find Full Text PDFAlthough tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins.
View Article and Find Full Text PDFIn this issue of , Niswander et al answer the questions: (1) Does stromal cell-derived factor 1 (SDF-1) direct megakaryocyte spatial distribution in the bone marrow? and (2) What effect does local SDF-1 concentration have on platelet output? If José Arcadio Buendía in had followed SDF-1, as megakaryocytes do, perhaps he would not have wandered the jungle for so long before founding Macondo at the riverside. Although we may never know what drew José Buendía to his city at the water's edge, megakaryocytes (parent cells to circulating blood platelets) appear to follow a chemotactic SDF-1 gradient as they migrate through the bone marrow endosteum to rest adjacent to sinusoidal blood vessels. There, they extend and sequentially release platelets, and larger preplatelet/proplatelet intermediates into the circulating blood.
View Article and Find Full Text PDFPlatelets are essential for haemostasis, and thrombocytopenia (platelet counts <150 × 10(9) /l) is a major clinical problem encountered across a number of conditions, including immune thrombocytopenic purpura, myelodysplastic syndromes, chemotherapy, aplastic anaemia, human immunodeficiency virus infection, complications during pregnancy and delivery, and surgery. Circulating blood platelets are specialized cells that function to prevent bleeding and minimize blood vessel injury. Platelets circulate in their quiescent form, and upon stimulation, activate to release their granule contents and spread on the affected tissue to create a physical barrier that prevents blood loss.
View Article and Find Full Text PDFWe used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case.
View Article and Find Full Text PDFAnimating complex biological processes contextualizes them within their underlying physiology, identifies gaps in our mechanistic understanding, affirms the importance of continued research, and provides a bridge between academic scientists and the general public. Here, two videos illustrate the clinical value of and translate state-of-the-art research in platelet production.
View Article and Find Full Text PDFDuring thrombopoiesis, megakaroycytes undergo extensive cytoskeletal remodeling to form proplatelet extensions that eventually produce mature platelets. Proplatelet formation is a tightly orchestrated process that depends on dynamic regulation of both tubulin reorganization and Rho-associated, coiled-coil containing protein kinase/RhoA activity. A disruption in tubulin dynamics or RhoA activity impairs proplatelet formation and alters platelet morphology.
View Article and Find Full Text PDFWnt signaling is involved in numerous aspects of vertebrate development and homeostasis, including the formation and function of blood cells. Here, we show that canonical and noncanonical Wnt signaling pathways are present and functional in megakaryocytes (MKs), with several Wnt effectors displaying MK-restricted expression. Using the CHRF288-11 cell line as a model for human MKs, the canonical Wnt3a signal was found to induce a time and dose-dependent increase in β-catenin expression.
View Article and Find Full Text PDFWe recently identified 68 genomic loci where common sequence variants are associated with platelet count and volume. Platelets are formed in the bone marrow by megakaryocytes, which are derived from hematopoietic stem cells by a process mainly controlled by transcription factors. The homeobox transcription factor MEIS1 is uniquely transcribed in megakaryocytes and not in the other lineage-committed blood cells.
View Article and Find Full Text PDFPlatelets are anucleate, discoid cells, roughly 2-3 μm in diameter that function primarily as regulators of hemostasis, but also play secondary roles in angiogensis and innate immunity. Although human adults contain nearly one trillion platelets in circulation that are turned over every 8-10 days, our understanding of the mechanisms involved in platelet production is still incomplete. Platelets stem from large (30-100 μm) nucleated cells called megakaryocytes that reside primarily in the bone marrow.
View Article and Find Full Text PDFHuman and murine platelets (PLTs) variably express toll-like receptors (TLRs), which link the innate and adaptive immune responses during infectious inflammation and atherosclerotic vascular disease. In this paper, we show that the TLR9 transcript is specifically up-regulated during pro-PLT production and is distributed to a novel electron-dense tubular system-related compartment we have named the T granule. TLR9 colocalizes with protein disulfide isomerase and is associated with either VAMP 7 or VAMP 8, which regulates its distribution in PLTs on contact activation (spreading).
View Article and Find Full Text PDFSerum response factor and its transcriptional cofactor MKL1 are critical for megakaryocyte maturation and platelet formation. We show that MKL2, a homologue of MKL1, is expressed in megakaryocytes and plays a role in megakaryocyte maturation. Using a megakaryocyte-specific Mkl2 knockout (KO) mouse on the conventional Mkl1 KO background to produce double KO (DKO) megakaryocytes and platelets, a critical role for MKL2 is revealed.
View Article and Find Full Text PDFPlatelet (PLT) production represents the final stage of megakaryocyte (MK) development. During differentiation, bone marrow MKs extend and release long, branched proPLTs into sinusoidal blood vessels, which undergo repeated abscissions to yield circulating PLTs. Circular-prePLTs are dynamic intermediate structures in this sequence that have the capacity to reversibly convert into barbell-proPLTs and may be related to "young PLTs" and "large PLTs" of both inherited and acquired macrothrombocytopenias.
View Article and Find Full Text PDFProplatelet production represents a terminal stage of megakaryocyte development during which long, branching processes composed of platelet-sized swellings are extended and released into the surrounding culture. Whereas the cytoskeletal mechanics driving these transformations have been the focus of many studies, significant limitations in our ability to quantify the rate and extent of proplatelet production have restricted the field to qualitative analyses of a limited number of cells over short intervals. A novel high-content, quantitative, live-cell imaging assay using the IncuCyte system (Essen BioScience) was therefore developed to measure the rate and extent of megakaryocyte maturation and proplatelet production under live culture conditions for extended periods of time.
View Article and Find Full Text PDF