Contrast-enhanced ultrasound (US) imaging is potentially applicable to the investigation of vascular disorders of the testis. We investigated the ability of two automated computer algorithms to analyse contrast-enhanced pulse inversion US data in a rabbit model of unilateral testicular ischaemia and to correctly determine relative testicular perfusion: nonlinear curve fitting of the US backscatter intensity as a function of time; and spectral analysis of the intensity time trace. We compared (i) five metrics based on the algorithmic data to testicular perfusion ratios obtained with radiolabelled microspheres, a reference standard; (ii) qualitative assessment of the US images by two independent readers blinded to the side of the experimental and control testes to the radiolabelled microsphere perfusion ratios; and (iii) results of the algorithmically-derived metrics to the qualitative assessments of the two readers.
View Article and Find Full Text PDFIt has been previously shown that the amplitude of the ultrasound-stimulated acoustic emission (USAE) signal is sensitive to tissue temperature and, therefore, can help detect it. Its amplitude, however, is sensitive to both acoustical and mechanical parameters, that at most frequencies have opposite effects due to temperature. In this paper, we explore the feasibility of using a frequency shift of the resonant peaks of the USAE signal for monitoring the tissue stiffness variation with temperature.
View Article and Find Full Text PDFUltrasound Med Biol
March 2002
Given the high variability of tissue properties during sonication, temperature monitoring is one of the most crucial components for accurate thermal treatment of tissues with focused ultrasound and other thermotherapy devices. Recently, the method of ultrasound-stimulated acoustic emission (USAE) has been introduced as a potential method for measurements of mechanical properties of tissues. In this paper, the dependence of USAE on tissue temperature is determined.
View Article and Find Full Text PDF