Objective: Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results.
Approach: The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum.
J Biomed Mater Res B Appl Biomater
February 2016
The biologically derived hydrogel Matrigel (MG) was used to coat a Parylene-based sheath intracortical electrode to act as a mechanical and biological buffer as well as a matrix for delivering bioactive molecules to modulate the cellular response and improve recording quality. MG was loaded with dexamethasone to reduce the immune response together with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) to maintain neuronal density and encourage neuronal ingrowth toward electrodes within the sheath. Coating the Parylene sheath electrode with the loaded MG significantly improved the signal-to-noise ratio for neural events recorded from the motor cortex in rat for more than 3 months.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2015
We introduce a micro-biochemical administration module (μBAM) for generating chemical gradients for use in axonal guidance studies. The device is designed to be simple to use, require minimal packaging, and be operated using only a pipette. A passive pumping mechanism is utilized to pump liquid through a SU-8 microchannel and then the micropore on the Parylene cap of the microchannel.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
We present the preliminary electrochemical characterization of 3D Parylene C sheath microelectrode array probes towards realizing reliable chronic neuroprosthetic recordings. Electrochemical techniques were used to verify electrode integrity after our novel post-fabrication thermoforming process was applied to flat surface micromachined structures to achieve a hollow sheath probe shape. Characterization of subsequent neurotrophic coatings was performed and accelerated life testing was used to simulate six months in vivo.
View Article and Find Full Text PDFA Parylene C neural probe with a three dimensional sheath structure was designed, fabricated, and characterized. Multiple platinum (Pt) electrodes for recording neural signals were fabricated on both inner and outer surfaces of the sheath structure. Thermoforming of Parylene was used to create the three dimensional sheath structures from flat surface micromachined microchannels using solid microwires as molds.
View Article and Find Full Text PDFWe present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids.
View Article and Find Full Text PDF