Publications by authors named "Jonathan T Ting"

The distinctive physiology of striatal medium spiny neurons (MSNs) underlies their ability to integrate sensory and motor input. In rodents, MSNs have a hyperpolarized resting potential and low input resistance. When activated, they have a delayed onset of spiking and regular spike rate.

View Article and Find Full Text PDF

Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct D1 and indirect D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These striosomal D1 (S-D1) and D2 (S-D2) pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei.

View Article and Find Full Text PDF

We present an enhancer AAV toolbox for accessing and perturbing striatal cell types and circuits. Best-in-class vectors were curated for accessing major striatal neuron populations including medium spiny neurons (MSNs), direct and indirect pathway MSNs, as well as Sst-Chodl, Pvalb-Pthlh, and cholinergic interneurons. Specificity was evaluated by multiple modes of molecular validation, three different routes of virus delivery, and with diverse transgene cargos.

View Article and Find Full Text PDF

Large-scale analysis of single-cell gene expression has revealed transcriptomically defined cell subclasses present throughout the primate neocortex with gene expression profiles that differ depending upon neocortical region. Here, we test whether the interareal differences in gene expression translate to regional specializations in the physiology and morphology of infragranular glutamatergic neurons by performing Patch-seq experiments in brain slices from the temporal cortex (TCx) and motor cortex (MCx) of the macaque. We confirm that transcriptomically defined extratelencephalically projecting neurons of layer 5 (L5 ET neurons) include retrogradely labeled corticospinal neurons in the MCx and find multiple physiological properties and ion channel genes that distinguish L5 ET from non-ET neurons in both areas.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying cell type-specific enhancers in the brain is crucial for developing genetic tools to study mammalian brains, particularly in the context of mouse models.
  • The 'Brain Initiative Cell Census Network (BICCN) Challenge' aimed to evaluate machine learning methods for predicting these enhancers based on data from multi-omics studies.
  • Key findings included the importance of open chromatin as a predictor of functional enhancers, the role of sequence models in distinguishing non-functional enhancers, and the recognition of specific transcription factor codes to aid in the design of enhancers, ultimately advancing our understanding of gene regulation in the mammalian brain.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers addressed the limited access to lower motor neurons (LMNs) in the mammalian spinal cord by creating single cell multiome datasets from mouse and macaque spinal cords to identify enhancers for different neuronal populations.* -
  • They cloned identified enhancers into viral vectors and conducted functional tests in mice to screen for effective candidates, which were then validated in rats and macaques.* -
  • This new toolkit for labeling LMNs and upper motor neurons (UMNs) can facilitate future research on cell function across species and contribute to potential therapies for neurodegenerative diseases in humans.*
View Article and Find Full Text PDF

Balanced activity of canonical direct D1 and indirect D2 basal ganglia pathways is considered a core requirement for normal movement, and their imbalance is an etiologic factor in movement and neuropsychiatric disorders. We present evidence for a conceptually equivalent pair of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from SPNs of the matrix, as do the canonical pathways. These S-D1 and S-D2 striosomal pathways target substantia nigra dopamine-containing neurons instead of basal ganglia motor output nuclei.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human gene replacement therapy using cell class-specific enhancers.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on human cortex have shown that GABAergic neurons have a complex hierarchical organization with various subclasses and specific types.
  • Researchers used advanced techniques to study these neurons in human brain slices, combining viral labeling and single-cell RNA sequencing.
  • The findings revealed detailed differences within GABAergic neuron types, including variations between human and mouse neurons and highlighted the need for comprehensive analysis to better understand brain cell properties.
View Article and Find Full Text PDF

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1.

View Article and Find Full Text PDF

GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure.

View Article and Find Full Text PDF

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates.

View Article and Find Full Text PDF

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient delivery of genes across the brain's blood vessels is crucial for treating neurological diseases, and modified adeno-associated viruses (AAV9) have been developed to target brain endothelial cells effectively in various animal models.
  • These modified AAVs show enhanced ability to transduce cells in non-human primates and human brain tissue, although their targeting efficiency varies across species.
  • The research indicates that these mouse-specific capsids can be utilized to alter the blood-brain barrier, turning it into a functional biofactory that produces beneficial proteins, like Hevin, to improve synaptic function in mice with synaptic deficits.
View Article and Find Full Text PDF

Non-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs'. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data.

View Article and Find Full Text PDF

The neocortex is disproportionately expanded in human compared with mouse, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues.

View Article and Find Full Text PDF

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species.

View Article and Find Full Text PDF

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear.

View Article and Find Full Text PDF

Optogenetic techniques have revolutionized neuroscience research and are poised to do the same for neurological gene therapy. The clinical use of optogenetics, however, requires that safety and efficacy be demonstrated in animal models, ideally in non-human primates (NHPs), because of their neurological similarity to humans. The number of candidate vectors that are potentially useful for neuroscience and medicine is vast, and no high-throughput means to test these vectors yet exists.

View Article and Find Full Text PDF