The liver contains an intricate microstructure that is critical for liver function. Architectural disruption of this spatial structure is pathologic. Unfortunately, 2D histopathology - the gold standard for pathological understanding of many liver diseases - can misrepresent or leave gaps in our understanding of complex 3D structural features.
View Article and Find Full Text PDFOpen-top light-sheet (OTLS) microscopy offers rapid 3D imaging of large optically cleared specimens. This enables nondestructive 3D pathology, which provides key advantages over conventional slide-based histology including comprehensive sampling without tissue sectioning/destruction and visualization of diagnostically important 3D structures. With 3D pathology, clinical specimens are often labeled with small-molecule stains that broadly target nucleic acids and proteins, mimicking conventional hematoxylin and eosin (H&E) dyes.
View Article and Find Full Text PDFHuman tissue, which is inherently three-dimensional (3D), is traditionally examined through standard-of-care histopathology as limited two-dimensional (2D) cross-sections that can insufficiently represent the tissue due to sampling bias. To holistically characterize histomorphology, 3D imaging modalities have been developed, but clinical translation is hampered by complex manual evaluation and lack of computational platforms to distill clinical insights from large, high-resolution datasets. We present TriPath, a deep-learning platform for processing tissue volumes and efficiently predicting clinical outcomes based on 3D morphological features.
View Article and Find Full Text PDFSignificance: In recent years, we and others have developed non-destructive methods to obtain three-dimensional (3D) pathology datasets of clinical biopsies and surgical specimens. For prostate cancer risk stratification (prognostication), standard-of-care Gleason grading is based on examining the morphology of prostate glands in thin 2D sections. This motivates us to perform 3D segmentation of prostate glands in our 3D pathology datasets for the purposes of computational analysis of 3D glandular features that could offer improved prognostic performance.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders of magnitude more tissue than conventional pathology methods while also providing a volumetric context that is not achievable with 2D tissue sections, and all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis, however, is not trivial and requires careful attention to a series of details during tissue preparation, imaging and initial data processing, as well as iterative optimization of the entire process. Here, we provide an end-to-end procedure covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDFAnnu Conf Expo (Am Soc Eng Educ)
April 2023
The University of Washington's Engineering Innovation in Health program is a yearlong engineering design course sequence where senior undergraduate and graduate engineering students across different disciplines work in teams with health professionals to address their unmet needs. With the onset of the COVID-19 pandemic, these team- and project-based courses shifted from an in-person to remote course environment. Here, we share innovative teaching strategies for a team-based, remote course environment.
View Article and Find Full Text PDFA miniature optical-sectioning fluorescence microscope with high sensitivity and resolution would enable non-invasive and real-time tissue inspection, with potential use cases including early disease detection and intraoperative guidance. Previously, we developed a miniature MEMS-based dual-axis confocal (DAC) microscope that enabled video-rate optically sectioned microscopy of human tissues. However, the device's clinical utility was limited due to a small field of view, a non-adjustable working distance, and a lack of a sterilization strategy.
View Article and Find Full Text PDFProstate cancer prognostication largely relies on visual assessment of a few thinly sectioned biopsy specimens under a microscope to assign a Gleason grade group (GG). Unfortunately, the assigned GG is not always associated with a patient's outcome in part because of the limited sampling of spatially heterogeneous tumors achieved by 2-dimensional histopathology. In this study, open-top light-sheet microscopy was used to obtain 3-dimensional pathology data sets that were assessed by 4 human readers.
View Article and Find Full Text PDFEarly detection of esophageal neoplasia via evaluation of endoscopic surveillance biopsies is the key to maximizing survival for patients with Barrett's esophagus, but it is hampered by the sampling limitations of conventional slide-based histopathology. Comprehensive evaluation of whole biopsies with 3-dimensional (3D) pathology may improve early detection of malignancies, but large 3D pathology data sets are tedious for pathologists to analyze. Here, we present a deep learning-based method to automatically identify the most critical 2-dimensional (2D) image sections within 3D pathology data sets for pathologists to review.
View Article and Find Full Text PDFRecent advances in 3D pathology offer the ability to image orders-of-magnitude more tissue than conventional pathology while providing a volumetric context that is lacking with 2D tissue sections, all without requiring destructive tissue sectioning. Generating high-quality 3D pathology datasets on a consistent basis is non-trivial, requiring careful attention to many details regarding tissue preparation, imaging, and data/image processing in an iterative process. Here we provide an end-to-end protocol covering all aspects of a 3D pathology workflow (using light-sheet microscopy as an illustrative imaging platform) with sufficient detail to perform well-controlled preclinical and clinical studies.
View Article and Find Full Text PDFHuman tissue consists of complex structures that display a diversity of morphologies, forming a tissue microenvironment that is, by nature, three-dimensional (3D). However, the current standard-of-care involves slicing 3D tissue specimens into two-dimensional (2D) sections and selecting a few for microscopic evaluation, with concomitant risks of sampling bias and misdiagnosis. To this end, there have been intense efforts to capture 3D tissue morphology and transition to 3D pathology, with the development of multiple high-resolution 3D imaging modalities.
View Article and Find Full Text PDFObjective: For tumor resections, margin status typically correlates with patient survival but positive margin rates are generally high (up to 45% for head and neck cancer). Frozen section analysis (FSA) is often used to intraoperatively assess the margins of excised tissue, but suffers from severe under-sampling of the actual margin surface, inferior image quality, slow turnaround, and tissue destructiveness.
Methods: Here, we have developed an imaging workflow to generate en face histologic images of freshly excised surgical margin surfaces based on open-top light-sheet (OTLS) microscopy.
Annu Rev Anal Chem (Palo Alto Calif)
June 2023
In recent years, there has been a revived appreciation for the importance of spatial context and morphological phenotypes for both understanding disease progression and guiding treatment decisions. Compared with conventional 2D histopathology, which is the current gold standard of medical diagnostics, nondestructive 3D pathology offers researchers and clinicians the ability to visualize orders of magnitude more tissue within their natural volumetric context. This has been enabled by rapid advances in tissue-preparation methods, high-throughput 3D microscopy instrumentation, and computational tools for processing these massive feature-rich data sets.
View Article and Find Full Text PDFA feature issue is being presented by a team of guest editors containing papers based on studies presented at the Optica Biophotonics Congress: Biomedical Optics held on April 24-27, 2022 in Fort Lauderdale, Florida, USA.
View Article and Find Full Text PDFContext.—: Anatomic pathologists render diagnosis on tissue samples sectioned onto glass slides and viewed under a bright-field microscope. This approach is destructive to the sample, which can limit its use for ancillary assays that can inform patient management.
View Article and Find Full Text PDFLight-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging.
View Article and Find Full Text PDFSignificance: There have been numerous academic and commercial efforts to develop high-resolution in vivo microscopes for a variety of clinical use cases, including early disease detection and surgical guidance. While many high-profile studies, commercialized products, and publications have resulted from these efforts, mainstream clinical adoption has been relatively slow other than for a few clinical applications (e.g.
View Article and Find Full Text PDFSignificance: For breast cancer patients, the extent of regional lymph node (LN) metastasis influences the decision to remove all axillary LNs. Metastases are currently identified and classified with visual analysis of a few thin tissue sections with conventional histology that may underrepresent the extent of metastases.
Aim: We sought to enable nondestructive three-dimensional (3D) pathology of human axillary LNs and to develop a practical workflow for LN staging with our method.
Fluorescence microscopy is a vital tool in biomedical research but faces considerable challenges in achieving uniform or bright labeling. For instance, fluorescent proteins are limited to model organisms, and antibody conjugates can be inconsistent and difficult to use with thick specimens. To partly address these challenges, we developed a labeling protocol that can rapidly visualize many well-contrasted key features and landmarks on biological specimens in both thin and thick tissues or cultured cells.
View Article and Find Full Text PDFProstate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients.
View Article and Find Full Text PDFIntroduction: Interdisciplinary academic teams perform better when competent in teamwork; however, there is a lack of best practices of how to introduce and facilitate the development of effective learning and functioning within these teams in academic environments.
Methods: To close this gap, we tailored, implemented, and evaluated team science training in the year-long Engineering Innovation in Health (EIH) program at the University of Washington (UW), a project-based course in which engineering students across several disciplines partner with health professionals to develop technical solutions to clinical and translational health challenges. EIH faculty from the UW College of Engineering and the Institute of Translational Health Sciences' (ITHS) Team Science Core codeveloped and delivered team science training sessions and evaluated their impact with biannual surveys.
The rate of positive margins in head and neck cancers has remained stagnant over the past three decades and is consistently associated with poor overall survival. This suggests that significant improvements must be made intraoperatively to ensure negative margins. We discuss the important role of fluorescence imaging to guide surgical oncology in head and neck cancer.
View Article and Find Full Text PDFHigh-throughput methods for slide-free three-dimensional (3D) pathological analyses of whole biopsies and surgical specimens offer the promise of modernizing traditional histology workflows and delivering improvements in diagnostic performance. Advanced optical methods now enable the interrogation of orders of magnitude more tissue than previously possible, where volumetric imaging allows for enhanced quantitative analyses of cell distributions and tissue structures that are prognostic and predictive. Non-destructive imaging processes can simplify laboratory workflows, potentially reducing costs, and can ensure that samples are available for subsequent molecular assays.
View Article and Find Full Text PDFSignificance: Processing and diagnosing a set of 12 prostate biopsies using conventional histology methods typically take at least one day. A rapid and accurate process performed while the patient is still on-site could significantly improve the patient's quality of life.
Aim: We develop and assess the feasibility of a one-hour-to-diagnosis (1Hr2Dx) method for processing and providing a preliminary diagnosis of a set of 12 prostate biopsies.
Open-top light-sheet (OTLS) microscopes have been developed for user-friendly and versatile high-throughput 3D microscopy of thick specimens. As with all imaging modalities, spatial resolution trades off with imaging and analysis times. A hierarchical multi-scale imaging workflow would therefore be of value for many volumetric microscopy applications.
View Article and Find Full Text PDF