Publications by authors named "Jonathan Snow"

Recent global declines in bee health have elevated the need for a more complete understanding of the cellular stress mechanisms employed by diverse bee species. We recently uncovered the biomarker lethal (2) essential for life [l(2)efl] genes as part of a shared transcriptional program in response to a number of cell stressors in the western honey bee (Apis mellifera). Here, we describe another shared stress-responsive gene, glycine N-methyltransferase (Gnmt), which is known as a key metabolic switch controlling cellular methylation reactions.

View Article and Find Full Text PDF

Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain.

View Article and Find Full Text PDF

Microsporidia cause disease in many beneficial insects, including honey bees, yet few pathogen control tools are available for protecting these important organisms against infection. Some evidence suggests that microsporidia possess a reduced number of genes encoding DNA repair proteins. We hypothesized that microsporidia would thus be susceptible to treatment with DNA-damaging agents and tested this hypothesis using a novel, rapid method for achieving robust and homogenous experimental infection of large numbers of newly emerged honey bees with one of its microsporidia pathogens, () .

View Article and Find Full Text PDF

Honey bees are critical pollinators in both agricultural and ecological settings. Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Although there are many environmental stressors implicated in honey bee disease, there has been intensifying focus on the role of microbial attacks on honey bee health.

View Article and Find Full Text PDF

Introduction: In orthodontics, treatment aims to improve the patient's occlusion and overall facial appearance. Extraction of 4 first premolars may improve the occlusion, but it may negatively impact a patient's facial harmony and create a "dished-in" appearance. Although many studies in orthodontic literature reviewed Caucasian patient soft-tissue change throughout extraction treatment, there is a void in the literature regarding Hispanic patients, who have different soft-tissue characteristics and may respond differently to extraction therapy.

View Article and Find Full Text PDF

Paromomycin is a naturally occurring aminoglycoside antibiotic that has effects on both prokaryotic and eukaryotic microbes. However, previous reports have indicated that it has little effect on microsporidia, including , in cell culture models. is one of a number of microsporidia species that cause disease in honey bees and substantial efforts to find new treatment strategies for bees that are infected with these pathogens are ongoing.

View Article and Find Full Text PDF

There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N.

View Article and Find Full Text PDF

The microsporidia is an obligate intracellular parasite that causes honey bee mortality and contributes to colony collapse. Fumagillin is presently the only pharmacological control for infections in honey bees. Resistance is already emerging, and alternative controls are critically needed.

View Article and Find Full Text PDF

The pollination services provided by the honey bee are critical in both natural and agricultural ecosystems. Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. Defining specific common cellular processes and cellular stress responses impacted by multiple stressors represent a key step in understanding these synergies.

View Article and Find Full Text PDF

We previously found that pharmacological inhibition of prolyl-tRNA synthetase by halofuginone has potent activity against Nosema ceranae, an important pathogen of honey bees. However, we also observed that prolyl-tRNA synthetase inhibition is toxic to bees, suggesting further work is necessary to make this a feasible therapeutic strategy. As expected, we found that pharmacological inhibition of prolyl-tRNA synthetase activity resulted in robust induction of select canonical ATF4 target genes in honey bees.

View Article and Find Full Text PDF

Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial.

View Article and Find Full Text PDF

Objective: To identify relationships between idiopathic intracranial hypertension (IIH) and socioeconomic determinants of health, such as low-income status and proximity to healthy food.

Methods: This retrospective case-control study of adult female neuro-ophthalmology patients from one institution identified 223 women with and 4,783 women without IIH. Street addresses were geocoded and merged with US census data to obtain census tract-level information on income and food access.

View Article and Find Full Text PDF

Our molecular understanding of honey bee cellular stress responses is incomplete. Previously, we sought to identify and began functional characterization of the components of the Unfolded Protein Response (UPR) in honey bees. We observed that UPR stimulation resulted in induction of target genes upon IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA.

View Article and Find Full Text PDF

The majority of fungal species prefer the 12° to 30°C range, and relatively few species tolerate temperatures higher than 35°C. Our understanding of the mechanisms underpinning the ability of some species to grow at higher temperatures is incomplete. is an obligate intracellular fungal parasite that infects honey bees and can cause individual mortality and contribute to colony collapse.

View Article and Find Full Text PDF

Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Nosema ceranae and Nosema apis, are microsporidian parasites that are highly pathogenic to honey bees and have been implicated as a factor in honey bee losses. While traditional methods for quantifying Nosema infection have high sensitivity and specificity, there is no field-portable device for field measurements by beekeepers.

View Article and Find Full Text PDF

The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants.

View Article and Find Full Text PDF

The honey bee is of paramount importance to humans in both agricultural and ecological settings. Honey bee colonies have suffered from increased attrition in recent years, stemming from complex interacting stresses. Defining common cellular stress responses elicited by these stressors represents a key step in understanding potential synergies.

View Article and Find Full Text PDF

The putative transfer and gene regulatory activities of diet-derived small RNAs (sRNAs) in ingesting animals are still debated. The existence of natural uptake of diet-derived sRNA by invertebrate species could have significant implication for our understanding of ecological relationships and could synergize with efforts to use RNA interference (RNAi) technology in agriculture. Here, we synthesize information gathered from studies in invertebrates using natural or artificial dietary delivery of sRNA and from studies of sRNA in vertebrate animals and plants to review our current understanding of uptake and impact of natural diet-derived sRNA on invertebrates.

View Article and Find Full Text PDF

Honey bees are critical pollinators in both agricultural and ecological settings. The Nosema species, ceranae and apis, are microsporidian parasites that are pathogenic to honey bees. While current methods for detecting Nosema infection have key merits, additional techniques with novel properties for studying the cell biology of Nosema infection are highly desirable.

View Article and Find Full Text PDF

Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees.

View Article and Find Full Text PDF

The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion.

View Article and Find Full Text PDF

Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges.

View Article and Find Full Text PDF

Cross-kingdom delivery of specific microRNAs to recipient organisms via food ingestion has been reported recently. However, it is unclear if such delivery of microRNAs occurs frequently in animal organisms after typical dietary intake. We found substantial levels of specific microRNAs in diets commonly consumed orally by humans, mice, and honey bees.

View Article and Find Full Text PDF

Foragers facilitate horizontal pathogen transmission in honey bee colonies, yet their systemic immune function wanes during transition to this life stage. In general, the insect immune system can be categorized into mechanisms operating at both the barrier epithelial surfaces and at the systemic level. As proposed by the intergenerational transfer theory of aging, such immunosenescence may result from changes in group resource allocation.

View Article and Find Full Text PDF