We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge.
View Article and Find Full Text PDFThis paper introduces assignment flows for density matrices as state spaces for representation and analysis of data associated with vertices of an underlying weighted graph. Determining an assignment flow by geometric integration of the defining dynamical system causes an interaction of the non-commuting states across the graph, and the assignment of a pure (rank-one) state to each vertex after convergence. Adopting the Riemannian-Bogoliubov-Kubo-Mori metric from information geometry leads to closed-form local expressions that can be computed efficiently and implemented in a fine-grained parallel manner.
View Article and Find Full Text PDF