Metal artifact reduction (MAR) algorithms reduce the errors caused by metal implants in x-ray computed tomography (CT) images and are an important part of error management in radiotherapy. A promising MAR approach is to leverage the information in magnetic resonance (MR) images that can be acquired for organ or tumor delineation. This is however complicated by the ambiguous relationship between CT values and conventional-sequence MR intensities as well as potential co-registration issues.
View Article and Find Full Text PDFPurpose: We investigated the impact on computed tomography (CT) image quality and photon, electron, and proton head-and-neck (H&N) radiotherapy (RT) dose calculations of three CT metal artifact reduction (MAR) approaches: A CT-based algorithm (oMAR Philips Healthcare), manual water override, and our recently presented, Magnetic Resonance (MR)-based kerMAR algorithm. We considered the following three hypotheses: I: Manual water override improves MAR over the CT- and MR-based alternatives; II: The automatic algorithms (oMAR and kerMAR) improve MAR over the uncorrected CT; III: kerMAR improves MAR over oMAR.
Methods: We included a veal shank phantom with/without six metal inserts and nine H&N RT patients with dental implants.