Publications by authors named "Jonathan Satin"

L-type CaV1.2 current (ICa,L) links electrical excitation to contraction in cardiac myocytes. ICa,L is tightly regulated to control cardiac output.

View Article and Find Full Text PDF

The adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity, which leads to progressive heart failure. Calcium (Ca) is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. A drug screen targeting proteins involved in CM calcium cycling in human embryonic stem cell-derived cardiac organoids (hCOs) revealed that only the inhibition of L-Type Calcium Channel (LTCC), but not other Ca regulatory proteins (SERCA or RYR), induced the CM cell cycle.

View Article and Find Full Text PDF

Background: The regenerative capacity of the heart after myocardial infarction is limited. Our previous study showed that ectopic introduction of 4 cell cycle factors (4F; CDK1 [cyclin-dependent kinase 1], CDK4 [cyclin-dependent kinase 4], CCNB [cyclin B1], and CCND [cyclin D1]) promotes cardiomyocyte proliferation in 15% to 20% of infected cardiomyocytes in vitro and in vivo and improves cardiac function after myocardial infarction in mice.

Methods: Using temporal single-cell RNA sequencing, we aimed to identify the necessary reprogramming stages during the forced cardiomyocyte proliferation with 4F on a single cell basis.

View Article and Find Full Text PDF

Complex tissue regeneration is extremely rare among adult mammals. An exception, however, is the superior tissue healing of multiple organs in spiny mice (Acomys). While Acomys species exhibit the remarkable ability to heal complex tissue with minimal scarring, little is known about their cardiac structure and response to cardiac injury.

View Article and Find Full Text PDF

In vitro analysis of primary isolated adult cardiomyocyte physiological processes often involves optical imaging of dye-loaded cells on a glass substrate. However, when exposed to rapid solution changes, primary cardiomyocytes often move to compromise quantitative measures. Improved immobilization of cells to glass would permit higher throughput assays.

View Article and Find Full Text PDF

The L-type Ca2+ channel (LTCC) provides trigger calcium to initiate cardiac contraction in a graded fashion that is regulated by L-type calcium current (ICa,L) amplitude and kinetics. Inactivation of LTCC is controlled to fine-tune calcium flux and is governed by voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). Rad is a monomeric G protein that regulates ICa,L and has recently been shown to be critical to β-adrenergic receptor (β-AR) modulation of ICa,L.

View Article and Find Full Text PDF

Sinoatrial node cardiomyocytes (SANcm) possess automatic, rhythmic electrical activity. SAN rate is influenced by autonomic nervous system input, including sympathetic nerve increases of heart rate (HR) via activation of β-adrenergic receptor signaling cascade (β-AR). L-type calcium channel (LTCC) activity contributes to membrane depolarization and is a central target of β-AR signaling.

View Article and Find Full Text PDF
Article Synopsis
  • - The study addresses the challenge of limited human heart tissue for testing drug efficacy and toxicity by developing a biomimetic culture system that can maintain heart slices from humans and pigs for up to 6 days.
  • - Three anti-cancer drugs known for their cardiotoxic effects were tested on the heart slice models, showing reduced viability and altered gene expression after 48 hours of incubation, highlighting the different mechanisms of toxicity for each drug.
  • - The heart slice culture models outperformed current methods in detecting the cardiotoxic effects of sunitinib and revealed important gene expression changes, suggesting their potential as a reliable platform for drug toxicity testing.
View Article and Find Full Text PDF

MS-based metabolomics methods are powerful techniques to map the complex and interconnected metabolic pathways of the heart; however, normalization of metabolite abundance to sample input in heart tissues remains a technical challenge. Herein, we describe an improved GC-MS-based metabolomics workflow that uses insoluble protein-derived glutamate for the normalization of metabolites within each sample and includes normalization to protein-derived amino acids to reduce biological variation and detect small metabolic changes. Moreover, glycogen is measured within the metabolomics workflow.

View Article and Find Full Text PDF

Existing therapies to improve heart function target β-adrenergic receptor (β-AR) signaling and Ca handling and often lead to adverse outcomes. This underscores an unmet need for positive inotropes that improve heart function without any adverse effects. The GTPase Ras associated with diabetes (RAD) regulates L-type Ca channel (LTCC) current (I).

View Article and Find Full Text PDF

Myonuclei gained during exercise-induced skeletal muscle hypertrophy may be long-lasting and could facilitate future muscle adaptability after deconditioning, a concept colloquially termed "muscle memory." The evidence for this is limited, mostly due to the lack of a murine exercise-training paradigm that is nonsurgical and reversible. To address this limitation, we developed a novel progressive weighted-wheel-running (PoWeR) model of murine exercise training to test whether myonuclei gained during exercise persist after detraining.

View Article and Find Full Text PDF

Stressful situations provoke the fight-or-flight response, incurring rapid elevation of cardiac output via activation of protein kinase A (PKA). In this issue of the JCI, Yang et al. focus on the L-type calcium channel complex (LTCC), and their findings require reexamination of dogmatic principles.

View Article and Find Full Text PDF

The protein Rad interacts with the LTCC to modulate trigger Ca, hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction (AMI).

View Article and Find Full Text PDF

The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels.

View Article and Find Full Text PDF

Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad) renders LTCC in a sympathomimetic state.

View Article and Find Full Text PDF

Rad-GTPase is a regulator of L-type calcium current (LTCC), with increased calcium current observed in Rad knockout models. While mouse models that result in elevated LTCC have been associated with heart failure, our laboratory and others observe a hypercontractile phenotype with enhanced calcium homeostasis in Rad(-/-). It is currently unclear whether this observation represents an early time point in a decompensatory progression towards heart failure or whether Rad loss drives a novel phenotype with stable enhanced function.

View Article and Find Full Text PDF

The short-term beat-to-beat variability of cardiac action potential duration (SBVR) occurs as a random alteration of the ventricular repolarization duration. SBVR has been suggested to be more predictive of the development of lethal arrhythmias than the action potential prolongation or QT prolongation of ECG alone. The mechanism underlying SBVR is not completely understood but it is known that SBVR depends on stochastic ion channel gating, intracellular calcium handling and intercellular coupling.

View Article and Find Full Text PDF

Background: Calmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia-susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS-associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+-dependent inactivation of L-type Ca2+ current.

Methods And Results: We coexpressed CaM mutants with the human cardiac Na channel (NaV1.

View Article and Find Full Text PDF

Background: The small GTPase Rad is a negative regulator of voltage-dependent L-type calcium channel current (ICaL); however, the effects of Rad ablation on cardiomyocyte function are unknown. The objective of this study is to test the hypothesis that Rad-depletion causes positive inotropic effects without inducing cardiac hypertrophy.

Methods And Results: Ventricular myocytes from adult Rad(-/-) mice were isolated and evaluated by patch-clamp recordings for I(Ca,L) and action potentials, Ca(2+) transients, and sarcomere shortening.

View Article and Find Full Text PDF

Rationale: The extent of heart disease varies from person to person, suggesting that genetic background is important in pathology. Genetic background is also important when selecting appropriate mouse models to study heart disease. This study examines heart growth as a function of strain, specifically C57BL/6 and DBA/2 mouse strains.

View Article and Find Full Text PDF

The L-type calcium channel (LTCC) provides trigger Ca(2+) for sarcoplasmic reticulum Ca-release, and LTCC function is influenced by interacting proteins including the LTCC distal COOH terminus (DCT) and calmodulin. DCT is proteolytically cleaved and reassociates with the LTCC complex to regulate calcium channel function. DCT reduces LTCC barium current (I(Ba,L)) in reconstituted channel complexes, yet the contribution of DCT to LTCC Ca(2+) current (I(Ca,L)) in cardiomyocyte systems is unexplored.

View Article and Find Full Text PDF