Obesity is a global health concern implicated in numerous chronic degenerative diseases, including type 2 diabetes, dyslipidemia, and neurodegenerative disorders. It is characterized by chronic low-grade inflammation, gut microbiota dysbiosis, insulin resistance, glucose intolerance, and lipid metabolism disturbances. Here, we investigated the therapeutic potential of environmental enrichment (EE) to prevent the progression of gut dysbiosis in mice with high-fat diet (HFD)-induced metabolic syndrome.
View Article and Find Full Text PDFAim: The aim of this study was to determine whether a direct relationship existed between absolute telomere length (aTL), obesity and familial functionality in a group of Mexican children.
Methods: We recruited 134 children (52% boys) aged 8-10 years during regular primary care check-ups in 2016 and evaluated physical activity (PA), feeding practices, anthropometrics, body fat percentage (BF%) and family dysfunction. Optimised quantitative PCR determined aTL from genomic deoxyribonucleic acid isolated from saliva samples.
Obesity-induced inflammation, triggered by lipid-mediated activation of the Nlrp3 inflammasome, results in glucose metabolism alterations and type 2 diabetes. This knowledge has been generated using animals deficient for any of the different components of this inflammasome (Caspase-1, Asc or Nlrp3) in the C57BL/6 background. Unlike C57BL/6 mice, which carry allele 2 of the Nlrp1b gene (Nlrp1b2), Balb/c mice that carry allele 1 (Nlrp1b1) are less prone to develop alterations in the glucose metabolism when fed with a high fat diet.
View Article and Find Full Text PDFCervical cancer is the second most common cause of cancer death in women worldwide and the development of new diagnosis, prognostic, and treatment strategies merits special attention. Although surgery and chemoradiotherapy can cure 80%-95% of women with early stage cancer, the recurrent and metastatic disease remains a major cause of cancer death. Many efforts have been made to design new drugs and develop gene therapies to treat cervical cancer.
View Article and Find Full Text PDF