We report on a young girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas. These features are similar to those reported in individuals with variant forms of orofaciodigital syndrome known as congenital heart defects, hamartomas of the tongue and polysyndactly (CHDHTP: OMIM 217085) [Örstavik et al., 1992] and orocardiodigital syndrome [Digilio et al.
View Article and Find Full Text PDFThe realistic electronic structure of semiconductor nanocrystals is characterized by excitonic fine structure and atomistic symmetry breakings that are challenging to resolve experimentally. Exciton-phonon coupling is one of the most sensitive measures of the excitonic wave functions of the nanocrystals. Here, we exploit this sensitivity via chirped pulse and polarization resolved femtosecond pump/probe spectroscopy of colloidal CdSe nanocrystals.
View Article and Find Full Text PDFSeveral different compositions of semiconductor nanocrystals are subjected to numerous spectroscopic techniques to elucidate the nature of surface trapping in these systems. We find a consistent temperature-dependent relationship between core and surface photoluminescence intensity and marked differences in electron-phonon coupling for core and surface states based on ultrafast measurements and Resonance Raman studies, respectively. These results support a minimal model of surface charge trapping applicable to a range of nanocrystal systems involving a single surface state in which the trapped charge polarization leads to strong phonon couplings, with transitions between the surface and band edge excitonic states being governed by semiclassical electron-transfer theory.
View Article and Find Full Text PDFWe demonstrate a dual pulse-shaper setup capable of independent polarization, phase, and amplitude control over each pulse. By using active phase stabilization, we achieve a phase stability of ~λ/314 between the two pulse shapers, making the dual-shaper setup suitable for both two-quantum and one-quantum measurements. The setup is compact and easily switchable between pump-probe and collinear geometries.
View Article and Find Full Text PDFOptical pumping of semiconductor nanocrystals with femtosecond pulse sequences was performed in order to modulate multiexciton populations. We show for the first time that control of multiexciton populations produces high speed modulation of stimulated emission. Upon the basis of the speed of multiexcitonic processes in nanocrystals, we show modulation rates approaching 1 THz by virtue of strong quantum confinement effects.
View Article and Find Full Text PDFAging of semiconductor nanocrystals (NCs) is well-known to attenuate the spontaneous photoluminescence from the band edge excitonic state by introduction of nonradiative trap states formed at the NC surface. In order to explore charge carrier dynamics dictated by the surface of the NC, femtosecond pump/probe spectroscopic experiments are performed on freshly synthesized and aged CdTe NCs. These experiments reveal fast electron trapping for aged CdTe NCs from the single excitonic state (X).
View Article and Find Full Text PDFBy direct observation of coherent acoustic phonons, we demonstrate a novel extrinsic piezoelectric response in colloidal CdSe semiconductor quantum dots. This response is driven by the migration of charges to the surface of the quantum dot on a vibrationally impulsive time scale. Surface- and fluence-dependent studies reveal that the observed carrier capture based piezo response is controllable and is at least an order of magnitude larger than the intrinsic piezo response of wurtzite CdSe.
View Article and Find Full Text PDFFiber Bragg gratings (FBGs) have previously found many applications as strain and vibration sensors. Here we demonstrate that they may also be employed as pickups for musical instruments and, specifically, for acoustic guitars and solid-body electric guitars. By fixing the FBG to a vibrating part of the instrument's body, e.
View Article and Find Full Text PDF