Publications by authors named "Jonathan S Schilling"

Article Synopsis
  • Dead fungal cells, referred to as necromass, contribute significantly to long-term soil carbon pools, but the genes responsible for their decomposition are not well understood.
  • * The study focused on the fungus Trichoderma reesei and its response to low and high melanin levels in the necromass of another fungus, Hyaloscypha bicolor, revealing over 100 up-regulated genes for carbohydrate-active enzymes (CAZymes) in the presence of necromass compared to glucose.
  • * Differential expression of specific genes related to proteases and laccases was noted, particularly linked to the breakdown of melanin, offering insights into the factors affecting carbon turnover rates in this underexplored area of soil biology.
View Article and Find Full Text PDF

As technologies advance alongside metabarcoding and metagenomic resources, particularly for larger fungal genomes, DNA extraction methods must be optimized to meet higher thresholds, especially from complex environmental substrates. This study focused on extracting fungal genomic compounds from woody substrates, a challenge due to the embedment of endophytic and saprotrophic fungi within wood cells, the physical recalcitrance of wood, the adsorption of nucleic acids to wood polymers, and the release of downstream inhibitors. Hypothesizing that cetyltrimethylammonium bromide would be the best option, we compared prominent methods by extracting and sequencing microbial DNA from sound and decayed birch (Betula papyrifera) and pine (Pinus resinosa).

View Article and Find Full Text PDF

Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c.

View Article and Find Full Text PDF

Brown rot fungi are primary decomposers of wood and litter in northern forests. Relative to other microbes, these fungi have evolved distinct mechanisms that rapidly depolymerize and metabolize cellulose and hemicellulose without digesting the more recalcitrant lignin. Its efficient degradative system has therefore attracted considerable attention for the development of sustainable biomass conversion technologies.

View Article and Find Full Text PDF

The brown rot fungus Fomitopsis pinicola efficiently depolymerizes wood cellulose via the combined activities of oxidative and hydrolytic enzymes. Mass spectrometric analyses of culture filtrates identified specific proteins, many of which were differentially regulated in response to substrate composition.

View Article and Find Full Text PDF

Wildfires drastically impact the soil environment, altering the soil organic matter, forming pyrolyzed compounds, and markedly reducing the diversity of microorganisms. Pyrophilous fungi, especially the species from the orders Pezizales and Agaricales, are fire-responsive fungal colonizers of post-fire soil that have historically been found fruiting on burned soil and thus may encode mechanisms of processing these compounds in their genomes. Pyrophilous fungi are diverse.

View Article and Find Full Text PDF

Wood decomposer fungi are grouped by how they extract sugars from lignocellulose. Brown rot fungi selectively degrade cellulose and hemicellulose, leaving lignin intact, and white rot fungi degrade all components. Many trees are susceptible to both rot types, giving carbon in Earth's woody biomass, specifically lignin, a flexible fate that is affected not only by the fungal decomposition mechanism but also the associated microbial community.

View Article and Find Full Text PDF

Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction.

View Article and Find Full Text PDF

Brown rot fungi dominate the carbon degradation of northern terrestrial conifers. These fungi adapted unique genetic inventories to degrade lignocellulose and to rapidly release a large quantity of carbohydrates for fungal catabolism. We know that brown rot involves "two-step" gene regulation to delay most hydrolytic enzyme expression until after harsh oxidative pretreatments.

View Article and Find Full Text PDF

Low-molecular-weight (LMW) aromatics are crucial in meditating fungal processes for plant biomass decomposition. Some LMW compounds are employed as electron donors for oxidative degradation in brown rot (BR), an efficient wood-degrading strategy in fungi that selectively degrades carbohydrates but leaves modified lignins. Previous understandings of LMW aromatics were primarily based on "bulk extraction", an approach that cannot fully reflect their real-time functions during BR.

View Article and Find Full Text PDF

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures).

View Article and Find Full Text PDF

Coarse woody debris (CWD) is a significant component of the forest biomass pool; hence a model is warranted to predict CWD decomposition and its role in forest carbon (C) and nutrient cycling under varying management and climatic conditions. A process-based model, CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) was calibrated and validated using data from the FACE (Free Air Carbon Dioxide Enrichment) Wood Decomposition Experiment utilizing pine (Pinus taeda), aspen (Populous tremuloides) and birch (Betula papyrifera) on nine Experimental Forests (EF) covering a range of climate, hydrology, and soil conditions across the continental USA. The model predictions were evaluated against measured FACE log mass loss over 6 years.

View Article and Find Full Text PDF

Coarse woody debris (CWD) is an important component in forests, hosting a variety of organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed a process-based model using literature, field observations, and expert knowledge to assess woody debris decomposition in forests and the movement of wood C into the soil and atmosphere. The sensitivity analysis was conducted against the primary ecological drivers (wood properties and ambient conditions) used as model inputs.

View Article and Find Full Text PDF

Understanding which fungi exhibit certain ecological traits, such as habitat, host, or substrate associations, and knowing how these traits change across space and time can provide invaluable insight into the roles fungi play in their respective ecosystems. Archived sporocarp data, such as the collection and observation records accessible through the Mycology Collections Portal (MyCoPortal), are well suited for trait investigations, since these records circumvent the need for field work, are geographically and temporally diverse, and often have detailed and trait-relevant environmental metadata. However, there are inefficiencies and inadequacies in the MyCoPortal online interface that affect data set generation and trait searching, and many of the available records have outdated or misspelled taxon names as well as misspelled location names.

View Article and Find Full Text PDF

Fungi can hasten microbial degradation of hydrophobic compounds by enhancing capture and dissolution into biofilms. For methane (CH ) released from natural soils and agricultural systems, prokaryotes are ultimately responsible for oxidation and degradation; however, in many cases Henry's law of gas dissolution, not oxidation, is rate-limiting. Given that fungi can improve capture and bioremediation of other hydrophobic compounds (e.

View Article and Find Full Text PDF

Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth's largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, and () , were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus.

View Article and Find Full Text PDF

Wood-decomposing fungi use distinct strategies to deconstruct wood that can significantly vary carbon release rates and fates. White and brown rot-type fungi attack lignin as a prerequisite to access carbohydrates (white rot) or selectively remove carbohydrates (brown rot). Soft rot fungi use less well-studied mechanisms to deconstruct wood (e.

View Article and Find Full Text PDF

Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among "white rot" fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates-"brown rot." The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures.

View Article and Find Full Text PDF

Fungi that decay wood have characteristic associations with certain tree species, but the mechanistic bases for these associations are poorly understood. We studied substrate-specific gene expression and RNA editing in six species of wood-decaying fungi from the 'Antrodia clade' (Polyporales, Agaricomycetes) on three different wood substrates (pine, spruce, and aspen) in submerged cultures. We identified dozens to hundreds of substrate-biased genes (i.

View Article and Find Full Text PDF

Brown rot wood-degrading fungi deploy reactive oxygen species (ROS) to loosen plant cell walls and enable selective polysaccharide extraction. These ROS, including Fenton-generated hydroxyl radicals (HO˙), react with little specificity and risk damaging hyphae and secreted enzymes. Recently, it was shown that brown rot fungi reduce this risk, in part, by differentially expressing genes involved in HO˙ generation ahead of those coding carbohydrate-active enzymes (CAZYs).

View Article and Find Full Text PDF

Methane (CH) is a powerful greenhouse gas emitted from natural and anthropogenic sources, and its emission rates vary among sources as a function of environment, microbial respiration, and feedbacks. Biological CH flux from natural and engineered systems is typically represented simply as generation of CH by methanogens minus oxidation by methanotrophs. In many cases, however, CH flux is modulated by transport and solubility mechanisms that occur before oxidation or other chemical transformation.

View Article and Find Full Text PDF

Wood-degrading fungi use a sequence of oxidative and hydrolytic mechanisms to loosen lignocellulose and then release and metabolize embedded sugars. These temporal sequences have recently been mapped at high resolution using directional growth on wood wafers, revealing previously obscured dynamics as fungi progressively colonize wood. Here, we applied secretomics in the same wafer design to track temporal trends on aspen decayed by fungi with distinct nutritional modes: two brown rot (BR) fungi ( and ) and two white rot (WR) fungi ( and ).

View Article and Find Full Text PDF

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures).

View Article and Find Full Text PDF