Publications by authors named "Jonathan S Rosenblum"

Unlike other members of the MAPK family, ERK5 contains a large C-terminal domain with transcriptional activation capability in addition to an N-terminal canonical kinase domain. Genetic deletion of ERK5 is embryonic lethal, and tissue-restricted deletions have profound effects on erythroid development, cardiac function, and neurogenesis. In addition, depletion of ERK5 is antiinflammatory and antitumorigenic.

View Article and Find Full Text PDF

Palbociclib is a cyclin-dependent kinase (CDK) 4/CDK6 inhibitor approved for breast cancer that is estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative. We profiled palbociclib in cells either sensitive or resistant to the drug using an ATP/ADP probe-based chemoproteomics platform. Palbociclib only engaged CDK4 or CDK6 in sensitive cells.

View Article and Find Full Text PDF

We describe the identification of a novel, tumor-specific missense mutation in the active site of casein kinase 1α (CSNK1A1) using activity-based proteomics. Matched normal and tumor colon samples were analyzed using an ATP acyl phosphate probe in a kinase-targeted LC-MS2 platform. An anomaly in the active-site peptide from CSNK1A1 was observed in a tumor sample that was consistent with an altered catalytic aspartic acid.

View Article and Find Full Text PDF

Hsp90 is an ATP-dependent chaperone of widespread interest as a drug target. Here, using an LC-MS/MS chemoproteomics platform based on a lysine-reactive ATP acyl phosphate probe, several Hsp90 inhibitors were profiled in native cell lysates. Inhibitor specificities for all four human paralogs of Hsp90 were simultaneously monitored at their endogenous relative abundances.

View Article and Find Full Text PDF

Dipeptidyl peptidases (DPPs) are proteolytic enzymes that regulate many physiological systems by degrading signaling peptides. DPP8 and DPP9 are distinct from DPP4 in sequence, cellular localization and expression levels, thus implying distinct functions. However, DPP8 and DPP9 expression needs further delineation.

View Article and Find Full Text PDF

The largest mammalian enzyme family is the kinases. Kinases and other nucleotide-binding proteins are key regulators of signal transduction pathways and the mutation or overexpression of these proteins is often the difference between health and disease. As a result, a massive research effort has focused on understanding how these proteins function and how to inhibit them for therapeutic benefit.

View Article and Find Full Text PDF

KIAA1363 is a serine hydrolase whose activity has been shown to be positively associated with tumor cell invasiveness. Thus, inhibitors of KIAA1363 represent a novel targeted therapy approach towards cancer. AX11890 ((1-bromo-2-naphthyl) N,N-dimethylcarbamate) was identified as a KIAA1363 inhibitor with an IC(50) value of 1.

View Article and Find Full Text PDF

The synthesis, GSK-3β inhibitory activity, and anti-microbial activity of bicyclic and tricyclic derivatives of the 5,7-diamino-6-fluoro-4-quinolone-3-carboxylic acid scaffold were studied. Kinase selectivity profiling indicated that members of this class were potent and highly selective GSK-3 inhibitors.

View Article and Find Full Text PDF

The Karyopherin (Kap) family of nuclear transport receptors enables trafficking of proteins to and from the nucleus in a precise, regulated manner. Individual members function in overlapping pathways, while simultaneously being very specific for their main cargoes. The details of this apparent contradiction and rules governing pathway preference remain to be further elucidated.

View Article and Find Full Text PDF

Introduction: Increase of serum alanine aminotransferase (ALT) activity is widely used as a surrogate marker for tissue damage. Two ALT isoforms, ALT1 and ALT2, have been cloned recently in mammals. The study investigated the source of elevated ALT activity in serum of dogs treated with a hepatotoxic compound.

View Article and Find Full Text PDF

Polo-like kinases play crucial roles throughout mitosis. We previously reported that wortmannin potently inhibits Polo-like kinase 1 (Plk1). In this study, we show that wortmannin also strongly inhibits Polo-like kinase 3 (Plk3).

View Article and Find Full Text PDF

A cell permeable DPP II [also known as DPP2, DPP7, and quiescent cell proline dipeptidase (QPP)] inhibitor has been synthesized. The azabicyclo[3.3.

View Article and Find Full Text PDF

The structure-activity relationship of various N-alkyl Gly-boro-Pro derivatives against three dipeptidyl peptidases (DPPs) was studied. In a series of N-cycloalkyl analogs, DPP4 and fibroblast activation protein-alpha (FAP) optimally preferred N-cycloheptyl whereas DPP7 tolerated even larger cycloalkyl rings. Gly alpha-carbon derivatization of N-cyclohexyl or N-(2-adamantyl) Gly-boro-Pro resulted in a significant decrease in potency against all the three DPPs.

View Article and Find Full Text PDF

Dipeptide-based inhibitors with C-substituted (alkyl or aminoalkyl) alpha-amino acids in the P2 position and boro-norleucine (boro-Nle) in the P1 position were synthesized. Relative to boro-proline, boro-Nle as a P1 residue was shown able to significantly dial out DPP4, FAP, DPP8, and DPP9 activity. Dab-boro-Nle (4g) proved to be the most selective and potent DPP7 inhibitor with a DPP7 IC50 value of 480 pM.

View Article and Find Full Text PDF

Polo-like kinases (PLKs) play critical roles throughout mitosis. Here, we report that wortmannin, which was previously thought to be a highly selective inhibitor of phosphoinositide (PI) 3-kinases, is a potent inhibitor of mammalian PLK1. Observation of the wortmannin-PLK1 interaction was enabled by a tetramethylrhodamine-wortmannin conjugate (AX7503) that permits rapid detection of PLK1 activity and expression in complex proteomes.

View Article and Find Full Text PDF

An analysis of the structurally and catalytically diverse serine hydrolase protein family in the Saccharomyces cerevisiae proteome was undertaken using two independent but complementary, large-scale approaches. The first approach is based on computational analysis of serine hydrolase active site structures; the second utilizes the chemical reactivity of the serine hydrolase active site in complex mixtures. These proteomics approaches share the ability to fractionate the complex proteome into functional subsets.

View Article and Find Full Text PDF

Much attention has recently been given to a class of proteases that cleave proteins and peptides after proline residues. This class includes dipeptidyl peptidase IV (DPP IV; also termed CD26), fibroblast activation protein alpha (FAP; seprase), DPP7 (DPP II; quiescent cell proline dipeptidase), DPP8, DPP9, and prolyl carboxypeptidase (PCP; angiotensinase C). More distant members include prolyl oligopeptidase (POP; post proline cleaving enzyme) and acylaminoacylpeptidase (AAP; acylpeptide hydrolase).

View Article and Find Full Text PDF