Primary central nervous system (CNS) marginal zone B-cell lymphoma (MZBCL) arising from the dural meninges is a rare but indolent disease. This malignancy can present in various ways, hence making it difficult to diagnose. Biopsy results dictate an appropriate treatment plan, which commonly consists of a combination of surgical resection, whole brain radiotherapy and systemic therapy.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) has a poor prognosis and requires new approaches for treatment. We have reported that a combination of vitamin D-based cell differentiation agents (doxercalciferol/carnosic acid [D2/CA]) added following the cytotoxic drug arabinocytosine (AraC) increases AML cell death (CD), a model for improved therapy of this disease. Because AraC-induced CD is known to involve reactive oxygen species (ROS) generation, here we investigated if the modulation of cellular REDOX status plays a role in the enhancement of cell death (ECD) by D2/CA.
View Article and Find Full Text PDFBACKGROUND The educational objective of this study was to describe 2 case reports in which patients were found to have an autoimmune disease concomitantly with a rare, benign histiocytic disorder known as Rosai-Dorfman disease (RDD). It is unclear if there is an underlying association between autoimmune disease and RDD. Lymphadenopathy, although most frequently seen bilaterally in the cervical region in RDD, may be present anywhere.
View Article and Find Full Text PDFAutoimmune polyglandular syndrome type 1 (APS1) is a rare autosomal recessive disorder, and large granular lymphocytic leukemia (LGLL) may, even more rarely, complicate APS1. LGLL may be subtle in presentation, but it is imperative to recognize LGLL in APS1 promptly, as outcome may otherwise be fatal, as described herein.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
March 2018
Numerous clinical studies of vitamin D, its derivatives or analogs, have failed to clearly demonstrate sustained benefits when used for the treatment of human malignant diseases. However, given the strong preclinical evidence of anti-neoplastic activity and the epidemiological associations suggesting that vitamin D compounds may have a place in cancer therapy, attempts are continuing to devise new approaches to their therapeutic use. This laboratory has developed a strategy to enhance the effectiveness of the currently standard therapy of Acute Myeloid Leukemia (AML) by the immediate addition of the vitamin D2 analog Doxercalciferol combined with the plant polyphenol-derived Carnosic acid to AML cells previously treated with Cytarabine (AraC).
View Article and Find Full Text PDF: Acquired coagulopathies are common; uncommonly, adsorption of coagulation factors from the circulation into the tissues by pathologic amyloid exceeds the body's ability to produce factor and results in acquired factor deficiency. When amyloidosis does cause a coagulopathy, it is most often acquired factor X deficiency, but there are rare reports of amyloidosis being associated with other acquired factor deficiencies. We investigated a case of a severe bleeding diathesis, the cause of which was combined acquired factor V deficiency and concomitant acquired von Willebrand syndrome.
View Article and Find Full Text PDFVitamin D has so far not fulfilled its early promise as an antineoplastic agent, in spite of compelling in vitro data. With the aim of bringing vitamin D or its derivatives (VDDs) effectively to the clinic, we developed a two-pronged approach. First, by adding the plant-derived Carnosic Acid (CA) to a vitamin D2 derivative Doxercalciferol we increased its differentiation potency without increasing it hypercalcemic properties.
View Article and Find Full Text PDFAcute Myeloid Leukemia (AML) has grave prognosis due to aggressive nature of the disease, the toxicity of standard treatment, and overall low cure rates. We recently showed that AML cells in established culture treated with Cytarabine (AraC) and a differentiation agent combination show enhancement of AraC cytotoxicity. Here we elucidate molecular changes which underlie this observation with focus on AML blasts in primary culture.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
November 2016
Arabinocytosine (AraC, also known as cytarabine) is one of the mainstays of AML therapy, but like other DNA damaging therapeutic agents it is rarely curative by itself. There is an emerging realization that the therapeutic outcomes may be improved by combining AraC with other compounds. Here we report that the addition of a differentiating agent combination immediately following AraC damage to AML blasts, selectively increases the cell kill.
View Article and Find Full Text PDFIt is now well known that in the mammalian body vitamin D is converted by successive hydroxylations to 1,25-dihydroxyvitamin D (1,25D), a steroid-like hormone with pleiotropic properties. These include important contributions to the control of cell proliferation, survival and differentiation, as well as the regulation of immune responses in disease. Here, we present recent advances in current understanding of the role of 1,25D in myelopoiesis and lymphopoiesis, and the potential of 1,25D and analogs (vitamin D derivatives; VDDs) for the control of hematopoietic malignancies.
View Article and Find Full Text PDFIntracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy.
View Article and Find Full Text PDFVitamin D derivatives, including its physiological form 1α,25(OH)2 vitamin D3 (1,25D), have anti-tumor actions demonstrated in cell culture and confirmatory epidemiological associations are frequently reported. However, their promise for use in the cancer clinic is still incompletely fulfilled, suggesting that a better understanding of the molecular events initiated by these compounds is needed for therapeutic advances. While ERK1/2 has been intensely investigated and is known to transmit signals for cell survival, growth, and differentiation, the role of other MAPK pathways has been studied sporadically.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) are important transducers of external signals for cell growth, survival, and other cellular responses including cell differentiation. Several MAPK cascades are known with the MEK1/2-ERK1/2, JNK, and p38MAPKs receiving most attention, but the role of MEK5-ERK5 in intracellular signaling deserves more scrutiny, as this pathway transmits signals that can complement ERK/2 signaling. We hypothesized that the ERK5 pathway plays a role in the control of monocytic differentiation, which is disturbed in myeloid leukemia.
View Article and Find Full Text PDFDespite progress in understanding the biology of acute myeloid leukemia (AML), and despite advances in treatment, the majority of patients with AML die from the disease. The observation that Vitamin D can induce AML blast cells in vitro to differentiate along the monocytic lineage was made 30 years ago; however, it remains to translate this into a clinically meaningful strategy. This is a review of published clinical experience regarding the use of Vitamin D and its analogs, either alone or in combination with other agents, to treat AML.
View Article and Find Full Text PDFCaspase function is known to be essential for cell death by apoptosis, but it is now increasingly recognized that these proteases also play important roles in other cellular events. Here we report for the first time that inhibition of cellular caspase activity can induce differentiation of AML blasts, and can enhance vitamin D-induced cell differentiation of these cells. This was studied in blasts obtained from nine patients with AML and one patient with CML by ex vivo culture in the presence of Q-VD-OPh (QVD), a pan caspase inhibitor.
View Article and Find Full Text PDF1,25-dihydroxyvitamin D3 (1,25D) has been shown to influence differentiation, cell proliferation and cell death in cultured leukemia cells. However, its clinical use is limited by its hypercalcemic effects. An analog of 1,25D, doxercalciferol (1-D2), has anti-tumor activity, with markedly reduced calcemic effects, which makes it a potential agent for clinical treatment of AML.
View Article and Find Full Text PDFAcute myelogenous leukemia (AML) is a disease characterized by dysregulated cell proliferation associated with impaired cell differentiation, and current treatment regimens rarely save the patient. Thus, new mechanism-based approaches are needed to improve prognosis of this disease. We have investigated in preclinical studies the potential anti-leukemia use of the plant-derived polyphenol Silibinin (SIL) in combination with 1,25-dihydroxyvitamin D3 (1,25D).
View Article and Find Full Text PDFInhibition of p38MAPK alpha/beta is known to enhance 1,25-dihydroxyvitamin (1,25D)-induced monocytic differentiation, but the detailed mechanism of this effect was not clear. We now show that the enhancement of differentiation becomes apparent with slow kinetics (12-24 h). Interestingly, the inhibition of p38MAPK alpha/beta by their selective inhibitor SB202190 (SB) leads to an upregulated expression of p38MAPK isoforms gamma and delta in 1,25D-treated AML cells, in cell lines and in primary culture.
View Article and Find Full Text PDFInduction of terminal differentiation is a conceptually attractive approach for the therapy of neoplastic diseases. Although vitamin D derivatives (deltanoids) can induce differentiation of AML cells in vitro, so far deltanoids have not been successfully brought to the clinic, due to the likelihood of life-threatening hypercalcemia. Here, we incubated freshly obtained blood cells from patients with AML with a plant antioxidant (PAOx), silibinin (SIL), alone or together with a deltanoid.
View Article and Find Full Text PDF1,25-Dihydroxyvitamin D3 (1,25D) induces differentiation of myeloid leukemia cells, but resistant cells are also encountered. We studied the mechanistic basis for the resistance in a model system using enhancers of 1,25D, the antioxidant carnosic acid and a kinase inhibitor SB202190. Knock-down (KD) of JNK2p54 unexpectedly increased the intensity of differentiation induced by the 1,25D, carnosic acid and SB202190 (DCS) combination.
View Article and Find Full Text PDFDifferentiation therapy of cancer is being explored as a potential modality for treatment of myeloid leukemia, and derivatives of vitamin D are gaining prominence as agents for this form of therapy. Cyclooxygenase (COX) inhibitors have been reported to enhance 1,25-dihydroxyvitamin D(3) (1,25D)-induced monocytic differentiation of promyeloblastic HL60 cells, but the mechanisms of this effect are not fully elucidated, and whether this potentiation can occur in other types of myeloid leukemia is not known. We found that combination treatment with 1,25D and non-specific COX inhibitors acetyl salicylic acid (ASA) or indomethacin can robustly potentiate differentiation of other types of human leukemia cells, i.
View Article and Find Full Text PDFMyelofibrosis is an uncommon phenomenon associated with a variety of neoplastic and inflammatory processes. Although there is evidence that cytokines elaborated by clonal malignant hematopoietic cells are implicated in myelofibrosis in primary hematologic disorders, there has been little data to date on the pathophysiology of myelofibrosis in autoimmune disorders. Here we report a case of autoimmune myelofibrosis with pancytopenia.
View Article and Find Full Text PDFJ Steroid Biochem Mol Biol
October 2005
The evidence for the promising potential for derivatives of Vitamin D (deltanoids) in the treatment of myeloid leukemias is increasing, but currently is not matched by the understanding of the precise mechanisms by which these anti-neoplastic effects are achieved. Unlike solid tumors in which growth retardation by deltanoids appears to result from inhibition of cell proliferation and the promotion of cell death by apoptosis, control of myeloid leukemia proliferation by deltanoids results from the induction of differentiation of the immature myelo-monocytic cells towards functional monocytic cells. We present here the accumulating evidence that a pathway that is initiated by deltanoid activation of Vitamin D receptor (VDR) and leads to monocytic differentiation of human myeloblastic HL60 cells, includes the MEK-ERK and JNK mitogen-activated protein kinases (MAPKs), their positive and negative regulators and a downstream effector C/EBPbeta.
View Article and Find Full Text PDFThe bone marrow (BM) is home to at least two stem cells, hematopoietic (HSC) and mesenchymal. Hematopoiesis is partly regulated through neurokinin-1 (NK-1) and NK-2 belonging to the family of G-protein/7-transmembrane receptors. NK-1 and NK-2 show preference for the neurotransmitters, substance P (SP) and neurokinin-A (NK-A), respectively.
View Article and Find Full Text PDF