The human management of honey bees () has resulted in the widespread introduction of subspecies outside of their native ranges. One well known example of this is , native to Northern Europe, which has now been significantly introgressed by the introduction of C lineage honey bees. Introgression has consequences for species in terms of future adaptive potential and long-term viability.
View Article and Find Full Text PDFPreservation of genetic diversity is critical to successful conservation, and there is increasing demand for the inclusion of ecologically meaningful genetic information in management decisions. Supportive breeding programmes are increasingly implemented to combat declines in many species, yet their effect on adaptive genetic variation is understudied. This is despite the fact that supportive breeding may interfere with natural evolutionary processes.
View Article and Find Full Text PDFAssessing genetic variation underlying ecologically important traits is increasingly of interest and importance in population and conservation genetics. For some groups generally useful markers exist for examining the relative role of selection and drift in shaping genetic diversity e.g.
View Article and Find Full Text PDFTrapping of carbon in deep underground brine-filled reservoirs is a promising approach for the reduction of atmospheric greenhouse gas emissions. However, estimation of the amount of carbon dioxide (CO(2)) that can be captured in a given reservoir and the long-term storage stability remain a challenge. One difficulty lies in the estimation of local capillary pressure effects that arise from mineral surface heterogeneity inherent in underground geological formations.
View Article and Find Full Text PDFAdsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall.
View Article and Find Full Text PDFTransverse-shear mode acoustic wave devices have been used as real-time, label-free detectors of conformational shifts in biomolecules on surfaces. However, material changes in the biochemical monolayers and coupling between the substrate and the surrounding liquid make it difficult to isolate the desired signal, so an understanding of these phenomena is required. An important step in this understanding is knowledge of the material properties of the linker layer that attaches a biochemically selective molecule to the gold surface, in our case, neutravidin.
View Article and Find Full Text PDFThe behaviour of proteins on surfaces and at interfaces is an important field with applications in drug development, clinical diagnostics and studies of device biocompatibility. A key factor is the conformation of surface-bound proteins, which can affect chemical signalling and drug binding. A recent study of the interactions of haemoglobin with hydrophobic anions at a liquid-liquid interface has shown that a pH- and orientation-dependent conformational change occurs in the haemoglobin molecule upon interaction with these anions.
View Article and Find Full Text PDFIn this Commentary, we discuss the paper Quantitative Determination of Size and Shape of Surface-Bound DNA Using an Acoustic Wave Sensor [Tsortos et al., Biophys. J.
View Article and Find Full Text PDFThe attachment of rat aortic smooth muscle cells to various surfaces has been monitored by a thickness shear mode acoustic wave device incorporated into an on-line configuration. Using the total injection analysis method, laminin and fibronectin were adsorbed to the device surface, to be followed by introduction of cells into the system. The results of these experiments in terms of frequency and motional resistance measurements were also compared with those for cell attachment to the bare gold electrode of the sensor.
View Article and Find Full Text PDFKelvin and acoustic fields of high-frequency have been employed in the non-invasive investigation of immortalized hypothalamic neurons, in order to assess their response to different concentrations of specific drugs, toxins, a stress-reducing hormone and neurotrophic factors. In an analytical systems biology approach, this work constitutes a first study of living neuron cultures by scanning Kelvin nanoprobe (SKN) and thickness shear mode (TSM) acoustic wave techniques. N-38 hypothalamic mouse neurons were immobilized on the gold electrode of 9 MHz TSM acoustic wave devices and gold-coated slides for study by SKN.
View Article and Find Full Text PDFA thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin-biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer.
View Article and Find Full Text PDF